I wrote a program:
import sympy as sp
# Define symbols
l, alpha, x, gamma, r, theta, beta, v = sp.symbols('l alpha x gamma r theta beta v')
c = 2.99792458 * 10**8
# Define the equation
lhs = l * sp.sin(beta)
rhs = sp.sqrt((l * alpha + x * gamma - r * theta) * sp.sqrt(1 - v**2 / c**2)) * \
sp.sqrt((l * alpha - x * gamma + r * theta) / sp.sqrt(1 - v**2 / c**2)) / alpha
equation = sp.Eq(lhs, rhs)
# Solve the equation for v
solution = sp.solve(equation, v)
# Print the solution
print("Solutions for v:")
for sol in solution:
print(sol)
It does not print any solutions to ( v ), whereas Mathematica does indicate that there are solutions to ( v ):
v -> (\[Sqrt](-8.98755*10^16 l^2 \[Alpha]^2 + 8.98755*10^16 x^2 \[Gamma]^2 - 1.79751*10^17 r x \[Gamma] \[Theta] + 8.98755*10^16 r^2 \[Theta]^2 +
8.98755*10^16 l^2 \[Alpha]^2 Sin[\[Beta]]^2))/(Sqrt[-1. l^2 \[Alpha]^2 + x^2 \[Gamma]^2 - 2.r x \[Gamma] \[Theta] + r^2 \[Theta]^2 + l^2 \[Alpha]^2 Sin[\[Beta]]^2])
Should Mathematica be corrected, or should we update the SymPy library to account for this? The program runs well, but it does not output the same solution that Mathematica does.
ti7
20.1k8 gold badges50 silver badges87 bronze badges
lang-js
vgoes away. 2. What assumptions are there on symbols?*10^8)^2]] Sqrt[(l \[Alpha] - x \[Gamma] + r \[Theta])/Sqrt[ 1 - v^2/(2.99792458*10^8)^2]])/[Alpha], v], which you can copy/paste directly into mathematica. Take the Reduce in Mathematica, i.e. Reduce[l Sin[[Beta]] == ( Sqrt[(l [Alpha] + x [Gamma] - r [Theta]) Sqrt[1 - v^2/(c)^2]] Sqrt[(l [Alpha] - x [Gamma] + r [Theta])/Sqrt[ 1 - v^2/(c)^2]])/[Alpha], v] for the real analysis