Being new to OOP, I wanted to know if there is any way of inheriting one of multiple classes based on how the child class is called in Python. The reason I am trying to do this is because I have multiple methods with the same name but in three parent classes which have different functionality. The corresponding class will have to be inherited based on certain conditions at the time of object creation.
For example, I tried to make Class C inherit A or B based on whether any arguments were passed at the time of instantiating, but in vain. Can anyone suggest a better way to do this?
class A:
def __init__(self,a):
self.num = a
def print_output(self):
print('Class A is the parent class, the number is 7',self.num)
class B:
def __init__(self):
self.digits=[]
def print_output(self):
print('Class B is the parent class, no number given')
class C(A if kwargs else B):
def __init__(self,**kwargs):
if kwargs:
super().__init__(kwargs['a'])
else:
super().__init__()
temp1 = C(a=7)
temp2 = C()
temp1.print_output()
temp2.print_output()
The required output would be 'Class A is the parent class, the number is 7' followed by 'Class B is the parent class, no number given'.
Thanks!
3 Answers 3
Whether you're just starting out with OOP or have been doing it for a while, I would suggest you get a good book on design patterns. A classic is Design Patterns by Gamma. Helm. Johnson and Vlissides.
Instead of using inheritance, you can use composition with delegation. For example:
class A:
def do_something(self):
# some implementation
class B:
def do_something(self):
# some implementation
class C:
def __init__(self, use_A):
# assign an instance of A or B depending on whether argument use_A is True
self.instance = A() if use_A else B()
def do_something(self):
# delegate to A or B instance:
self.instance.do_something()
Update
In response to a comment made by Lev Barenboim, the following demonstrates how you can make composition with delegation appear to be more like regular inheritance so that if class C has has assigned an instance of class A, for example, to self.instance, then attributes of A such as x can be accessed internally as self.x as well as self.instance.x (assuming class C does not define attribute x itself) and likewise if you create an instance of C named c, you can refer to that attribute as c.x as if class C had inherited from class A.
The basis for doing this lies with builtin methods __getattr__ and __getattribute__. __getattr__ can be defined on a class and will be called whenever an attribute is referenced but not defined. __getattribute__ can be called on an object to retrieve an attribute by name.
Note that in the following example, class C no longer even has to define method do_something if all it does is delegate to self.instance:
class A:
def __init__(self, x):
self.x = x
def do_something(self):
print('I am A')
class B:
def __init__(self, x):
self.x = x
def do_something(self):
print('I am B')
class C:
def __init__(self, use_A, x):
# assign an instance of A or B depending on whether argument use_A is True
self.instance = A(x) if use_A else B(x)
# called when an attribute is not found:
def __getattr__(self, name):
# assume it is implemented by self.instance
return self.instance.__getattribute__(name)
# something unique to class C:
def foo(self):
print ('foo called: x =', self.x)
c = C(True, 7)
print(c.x)
c.foo()
c.do_something()
# This will throw an Exception:
print(c.y)
Prints:
7
foo called: x = 7
I am A
Traceback (most recent call last):
File "C:\Ron\test\test.py", line 34, in <module>
print(c.y)
File "C:\Ron\test\test.py", line 23, in __getattr__
return self.instance.__getattribute__(name)
AttributeError: 'A' object has no attribute 'y'
5 Comments
C delegates to class A for example and you want access an attribute of A, for example x without having to say self.instance.x but rather self.x just as if A inherited from C. Right?I don't think you can pass values to the condition of the class from inside itself.
Rather, you can define a factory method like this :
class A:
def sayClass(self):
print("Class A")
class B:
def sayClass(self):
print("Class B")
def make_C_from_A_or_B(make_A):
class C(A if make_A else B):
def sayClass(self):
super().sayClass()
print("Class C")
return C()
make_C_from_A_or_B(True).sayClass()
which output :
Class A
Class C
Note: You can find information about the factory pattern with an example I found good enough on this article (about a parser factory)
6 Comments
I think I would use a variant of @Booboo's answer as follows:
- Define a separate "common" class for the utility functions.
- Subclass A and B from the common class.
- Create a factory function C that returns A or B based on the criteria.
For example, this code:
# define a class of common utility functions for A and B
class CommonUtils:
common_int: int = 123
def common_util(self):
print("This is a common utility function for A and B.")
# subclass A from CommonUtils
class A(CommonUtils):
kwargs: dict = {}
def __init__(self, **kwargs):
super().__init__()
self.kwargs = kwargs
def print_output(self):
print(f"Class A, {self.kwargs=}")
# subclass B from CommonUtils
class B(CommonUtils):
def __init__(self):
super().__init__()
self.kwargs = None
def print_output(self):
print("Class B, no kwargs")
# define a factory function C that returns either A or B
def C(**kwargs) -> A | B:
return A(**kwargs) if kwargs else B()
can be run as follows:
# if arguments are passed, C() returns class A
temp1 = C(a=7)
temp1.print_output()
temp1.common_util()
print(temp1.common_int)
# if no arguments are passed, C() returns class B
temp2 = C()
temp2.print_output()
temp2.common_util()
print(temp2.common_int)
to return this output:
Class A, self.kwargs={'a': 7}
This is a common utility function for A and B.
123
Class B, no kwargs
This is a common utility function for A and B.
123
Cat all; you just want a function that returns either an instance ofAor an instance ofB, depending on the argument's passed.