In Python, it is quite simple to produce all permutations of a list using the itertools
module. I have a situation where the sequence I'm using only has two characters (i.e. '1122'
). I want to generate all unique permutations.
For the string '1122'
, there are 6 unique permutations (1122
, 1212
, 1221
, etc), but itertools.permutations
will yield 24 items. It's simple to only record the unique permutations, but it will take much longer than necessary to collect them as all 720 items are considered.
Is there a function or module that accounts for repeated elements when generating permutations so I don't have to write my own?
6 Answers 6
This web page looks promising.
def next_permutation(seq, pred=cmp):
"""Like C++ std::next_permutation() but implemented as
generator. Yields copies of seq."""
def reverse(seq, start, end):
# seq = seq[:start] + reversed(seq[start:end]) + \
# seq[end:]
end -= 1
if end <= start:
return
while True:
seq[start], seq[end] = seq[end], seq[start]
if start == end or start+1 == end:
return
start += 1
end -= 1
if not seq:
raise StopIteration
try:
seq[0]
except TypeError:
raise TypeError("seq must allow random access.")
first = 0
last = len(seq)
seq = seq[:]
# Yield input sequence as the STL version is often
# used inside do {} while.
yield seq[:]
if last == 1:
raise StopIteration
while True:
next = last - 1
while True:
# Step 1.
next1 = next
next -= 1
if pred(seq[next], seq[next1]) < 0:
# Step 2.
mid = last - 1
while not (pred(seq[next], seq[mid]) < 0):
mid -= 1
seq[next], seq[mid] = seq[mid], seq[next]
# Step 3.
reverse(seq, next1, last)
# Change to yield references to get rid of
# (at worst) |seq|! copy operations.
yield seq[:]
break
if next == first:
raise StopIteration
raise StopIteration
>>> for p in next_permutation([int(c) for c in "111222"]):
... print p
...
[1, 1, 1, 2, 2, 2]
[1, 1, 2, 1, 2, 2]
[1, 1, 2, 2, 1, 2]
[1, 1, 2, 2, 2, 1]
[1, 2, 1, 1, 2, 2]
[1, 2, 1, 2, 1, 2]
[1, 2, 1, 2, 2, 1]
[1, 2, 2, 1, 1, 2]
[1, 2, 2, 1, 2, 1]
[1, 2, 2, 2, 1, 1]
[2, 1, 1, 1, 2, 2]
[2, 1, 1, 2, 1, 2]
[2, 1, 1, 2, 2, 1]
[2, 1, 2, 1, 1, 2]
[2, 1, 2, 1, 2, 1]
[2, 1, 2, 2, 1, 1]
[2, 2, 1, 1, 1, 2]
[2, 2, 1, 1, 2, 1]
[2, 2, 1, 2, 1, 1]
[2, 2, 2, 1, 1, 1]
>>>
2017年08月12日
Seven years later, here is a better algorithm (better for clarity):
from itertools import permutations
def unique_perms(series):
return {"".join(p) for p in permutations(series)}
print(sorted(unique_perms('1122')))
-
Is it OK that
reverse
is used on each iteration? It hasO(n)
complexity, and the fact it's run on every iteration may make the whole algorithm pretty slow.ovgolovin– ovgolovin12/24/2011 16:48:15Commented Dec 24, 2011 at 16:48 -
I modified the code a bit for it to be more to the point and reflect the names used to describe the algorithm in the Knuth's book. For those who need it I post the link: ideone.com/juG94ovgolovin– ovgolovin12/24/2011 18:02:38Commented Dec 24, 2011 at 18:02
-
Also, I have rewritten this algorithm using more functional style coding (with generators). It's a few times slower than the version working directly with indexes. Still, the main part of the algorithm (beginning with
while True:
) looks more clear in this version. The code is here: ideone.com/mvu1yovgolovin– ovgolovin12/24/2011 18:04:44Commented Dec 24, 2011 at 18:04 -
Nice work, but I can not realize why it does not work with zeros in the sequencefreude– freude06/03/2013 12:17:20Commented Jun 3, 2013 at 12:17
-
1@freude: this function iterates until it reaches the largest lexicographical permutation, then stops. Therefore, to obtain all permutations, make sure to sort your input (so that it is the lowest permutation, lexicographically).nneonneo– nneonneo07/25/2016 05:44:05Commented Jul 25, 2016 at 5:44
More Itertools has a function for this:
more-itertools.distinct_permutations(iterable)
Yields successive distinct permutations of the elements in iterable.
Equivalent to
set(permutations(iterable))
, except duplicates are not generated and thrown away. For larger input sequences, this is much more efficient.
from more_itertools import distinct_permutations
for p in distinct_permutations('1122'):
print(''.join(p))
# 2211
# 2121
# 1221
# 2112
# 1212
# 1122
Installation:
pip install more-itertools
-
4
Using set makes solution simpler. Strings with repeated chars, and non repeated, used as input.
from itertools import permutations
def perm(s):
return set(permutations(s))
l = '1122'
perm(l)
{('1', '1', '2', '2'),
('1', '2', '1', '2'),
('1', '2', '2', '1'),
('2', '1', '1', '2'),
('2', '1', '2', '1'),
('2', '2', '1', '1')}
l2 = '1234'
perm(l2)
{('1', '2', '3', '4'),
('1', '2', '4', '3'),
('1', '3', '2', '4'),
('1', '3', '4', '2'),
('1', '4', '2', '3'),
('1', '4', '3', '2'),
('2', '1', '3', '4'),
('2', '1', '4', '3'),
('2', '3', '1', '4'),
('2', '3', '4', '1'),
('2', '4', '1', '3'),
('2', '4', '3', '1'),
('3', '1', '2', '4'),
('3', '1', '4', '2'),
('3', '2', '1', '4'),
('3', '2', '4', '1'),
('3', '4', '1', '2'),
('3', '4', '2', '1'),
('4', '1', '2', '3'),
('4', '1', '3', '2'),
('4', '2', '1', '3'),
('4', '2', '3', '1'),
('4', '3', '1', '2'),
('4', '3', '2', '1')}
-
1The following is sufficient and concise: set(permutations(s))Leland Hepworth– Leland Hepworth02/03/2021 17:45:28Commented Feb 3, 2021 at 17:45
-
1@LelandHepworth, Yes, you are correct. There was no need for using re or list.LetzerWille– LetzerWille02/03/2021 18:29:07Commented Feb 3, 2021 at 18:29
This is also a common interview question. In the event standard library modules can't be used, here is an implementation to consider:
We define a lexicographic ordering of permutations. Once we do that we can just start with the smallest permutation and increment it minimally till we reach the largest permutation.
def next_permutation_helper(perm):
if not perm:
return perm
n = len(perm)
"""
Find k such that p[k] < p[k + l] and entries after index k appear in
decreasing order.
"""
for i in range(n - 1, -1, -1):
if not perm[i - 1] >= perm[i]:
break
# k refers to the inversion point
k = i - 1
# Permutation is already the max it can be
if k == -1:
return []
"""
Find the smallest p[l] such that p[l] > p[k]
(such an l must exist since p[k] < p[k + 1].
Swap p[l] and p[k]
"""
for i in range(n - 1, k, -1):
if not perm[k] >= perm[i]:
perm[i], perm[k] = perm[k], perm[i]
break
# Reverse the sequence after position k.
perm[k + 1 :] = reversed(perm[k + 1 :])
return perm
def multiset_permutation(A):
"""
We sort array first and `next_permutation()` will ensure we generate
permutations in lexicographic order
"""
A = sorted(A)
result = list()
while True:
result.append(A.copy())
A = next_permutation_helper(A)
if not A:
break
return result
Output:
>>> multiset_permutation([1, 1, 2, 2])
[[1, 1, 2, 2], [1, 2, 1, 2], [1, 2, 2, 1], [2, 1, 1, 2], [2, 1, 2, 1], [2, 2, 1, 1]]
You can transform the output from the mutable list to string using join on this line:
result.append("".join(map(str, A.copy())))
to get:
['1122', '1212', '1221', '2112', '2121', '2211']
from more_itertools import distinct_permutations
x = [p for p in distinct_permutations(['M','I','S', 'S', 'I'])]
for item in x:
print(item)
Output:
('I', 'S', 'S', 'I', 'M')
('S', 'I', 'S', 'I', 'M')
('S', 'S', 'I', 'I', 'M')
('I', 'S', 'I', 'S', 'M')
('S', 'I', 'I', 'S', 'M')
('I', 'I', 'S', 'S', 'M')
('I', 'S', 'I', 'M', 'S')
('S', 'I', 'I', 'M', 'S')
('I', 'I', 'S', 'M', 'S')
('I', 'I', 'M', 'S', 'S')
('I', 'S', 'S', 'M', 'I')
('S', 'I', 'S', 'M', 'I')
('S', 'S', 'I', 'M', 'I')
('S', 'S', 'M', 'I', 'I')
('I', 'S', 'M', 'S', 'I')
('S', 'I', 'M', 'S', 'I')
('S', 'M', 'I', 'S', 'I')
('S', 'M', 'S', 'I', 'I')
('I', 'M', 'S', 'S', 'I')
('M', 'I', 'S', 'S', 'I')
('M', 'S', 'I', 'S', 'I')
('M', 'S', 'S', 'I', 'I')
('I', 'S', 'M', 'I', 'S')
('S', 'I', 'M', 'I', 'S')
('S', 'M', 'I', 'I', 'S')
('I', 'M', 'S', 'I', 'S')
('M', 'I', 'S', 'I', 'S')
('M', 'S', 'I', 'I', 'S')
('I', 'M', 'I', 'S', 'S')
('M', 'I', 'I', 'S', 'S')
A very simple solution, likely similar to what is used by more_itertools
, which takes advantage of the lexicographical order of permutations as suggested by @Brayoni, can be done by building an index of the iterable.
Let's say you have L = '1122'
. You can build a very simple index with something like this:
index = {x: i for i, x in enumerate(sorted(L))}
Let's say you have a permutation P
of L
. It does not matter how many elements P
has. Lexicographical ordering dictates that if you map P
to using the index, it must always increase. Map P
like this:
mapped = tuple(index[e] for e in p) # or tuple(map(index.__getitem__, p))
Now you can discard elements that are less than or equal to the maximum seen so far:
def perm_with_dupes(it, n=None):
it = tuple(it) # permutations will do this anyway
if n is None:
n = len(it)
index = {x: i for i, x in enumerate(it)}
maximum = (-1,) * (len(it) if n is None else n)
for perm in permutations(it, n):
key = tuple(index[e] for e in perm)
if key <= maximum: continue
maximum = key
yield perm
Notice that there is no additional memory overhead past keeping the last maximum item around. You can join the tuples with ''
if you like.