I have a target array ["apple","banana","orange"], and I want to check if other arrays contain any one of the target array elements.
For example:
["apple","grape"] //returns true;
["apple","banana","pineapple"] //returns true;
["grape", "pineapple"] //returns false;
How can I do it in JavaScript?
32 Answers 32
Vanilla JS
const found = array1.some(r=> array2.includes(r))
How it works
some(..) checks each element of the array against a test function and returns true if any element of the array passes the test function, otherwise, it returns false. includes(..) both return true if the given argument is present in the array.
9 Comments
[false, false, false]instead of an empty array[]?.filter() to get a list of the rows that were applicable to the task at hand, and the some() method came in handy. Thank you. var searchTerms = ['term1', 'term2', 'term3', 'term4']; var results = csvRows.filter(row => searchTerms.some(value => row.column1.includes(value)));const found = needlesArr.some(needle=>haystackArr.includes(needle));vanilla js
/**
* @description determine if an array contains one or more items from another array.
* @param {array} haystack the array to search.
* @param {array} arr the array providing items to check for in the haystack.
* @return {boolean} true|false if haystack contains at least one item from arr.
*/
var findOne = function (haystack, arr) {
return arr.some(function (v) {
return haystack.indexOf(v) >= 0;
});
};
As noted by @loganfsmyth you can shorten it in ES2016 to
/**
* @description determine if an array contains one or more items from another array.
* @param {array} haystack the array to search.
* @param {array} arr the array providing items to check for in the haystack.
* @return {boolean} true|false if haystack contains at least one item from arr.
*/
const findOne = (haystack, arr) => {
return arr.some(v => haystack.includes(v));
};
or simply as arr.some(v => haystack.includes(v));
If you want to determine if the array has all the items from the other array, replace some() to every()
or as arr.every(v => haystack.includes(v));
6 Comments
some() is rad. Quits as soon as something matches.arr.some(v=> haystack.indexOf(v) >= 0)arr.some(v => haystack.includes(v))arr1.some(v => arr2.indexOf(v) >= 0).includes, as apparently it is not supported in IE: stackoverflow.com/questions/36574351/… ES6 solution:
let arr1 = [1, 2, 3];
let arr2 = [2, 3];
let isFound = arr1.some( ai => arr2.includes(ai) );
Alternatively, if must contain all values:
let allFound = arr2.every( ai => arr1.includes(ai) );
3 Comments
let allFounded = arr2.every( ai => return arr1.includes(ai) );If you're not opposed to using a libray, http://underscorejs.org/ has an intersection method, which can simplify this:
var _ = require('underscore');
var target = [ 'apple', 'orange', 'banana'];
var fruit2 = [ 'apple', 'orange', 'mango'];
var fruit3 = [ 'mango', 'lemon', 'pineapple'];
var fruit4 = [ 'orange', 'lemon', 'grapes'];
console.log(_.intersection(target, fruit2)); //returns [apple, orange]
console.log(_.intersection(target, fruit3)); //returns []
console.log(_.intersection(target, fruit4)); //returns [orange]
The intersection function will return a new array with the items that it matched and if not matches it returns empty array.
4 Comments
_.some() i.e. _.some(_.intersection(target, fruit2))_.isEmpty(_.intersection(target, fruit2)). Thanks @willzES6 (fastest)
const a = ['a', 'b', 'c'];
const b = ['c', 'a', 'd'];
a.some(v=> b.indexOf(v) !== -1)
ES2016
const a = ['a', 'b', 'c'];
const b = ['c', 'a', 'd'];
a.some(v => b.includes(v));
Underscore
const a = ['a', 'b', 'c'];
const b = ['c', 'a', 'd'];
_.intersection(a, b)
DEMO: https://jsfiddle.net/r257wuv5/
jsPerf: https://jsperf.com/array-contains-any-element-of-another-array
3 Comments
If you don't need type coercion (because of the use of indexOf), you could try something like the following:
var arr = [1, 2, 3];
var check = [3, 4];
var found = false;
for (var i = 0; i < check.length; i++) {
if (arr.indexOf(check[i]) > -1) {
found = true;
break;
}
}
console.log(found);
Where arr contains the target items. At the end, found will show if the second array had at least one match against the target.
Of course, you can swap out numbers for anything you want to use - strings are fine, like your example.
And in my specific example, the result should be true because the second array's 3 exists in the target.
UPDATE:
Here's how I'd organize it into a function (with some minor changes from before):
var anyMatchInArray = (function () {
"use strict";
var targetArray, func;
targetArray = ["apple", "banana", "orange"];
func = function (checkerArray) {
var found = false;
for (var i = 0, j = checkerArray.length; !found && i < j; i++) {
if (targetArray.indexOf(checkerArray[i]) > -1) {
found = true;
}
}
return found;
};
return func;
}());
DEMO: http://jsfiddle.net/u8Bzt/
In this case, the function could be modified to have targetArray be passed in as an argument instead of hardcoded in the closure.
UPDATE2:
While my solution above may work and be (hopefully more) readable, I believe the "better" way to handle the concept I described is to do something a little differently. The "problem" with the above solution is that the indexOf inside the loop causes the target array to be looped over completely for every item in the other array. This can easily be "fixed" by using a "lookup" (a map...a JavaScript object literal). This allows two simple loops, over each array. Here's an example:
var anyMatchInArray = function (target, toMatch) {
"use strict";
var found, targetMap, i, j, cur;
found = false;
targetMap = {};
// Put all values in the `target` array into a map, where
// the keys are the values from the array
for (i = 0, j = target.length; i < j; i++) {
cur = target[i];
targetMap[cur] = true;
}
// Loop over all items in the `toMatch` array and see if any of
// their values are in the map from before
for (i = 0, j = toMatch.length; !found && (i < j); i++) {
cur = toMatch[i];
found = !!targetMap[cur];
// If found, `targetMap[cur]` will return true, otherwise it
// will return `undefined`...that's what the `!!` is for
}
return found;
};
DEMO: http://jsfiddle.net/5Lv9v/
The downside to this solution is that only numbers and strings (and booleans) can be used (correctly), because the values are (implicitly) converted to strings and set as the keys to the lookup map. This isn't exactly good/possible/easily done for non-literal values.
3 Comments
undefined...that's what the !! is for" - that's wrong. It will return the boolean opposition of !.function containsAny(source,target)
{
var result = source.filter(function(item){ return target.indexOf(item) > -1});
return (result.length > 0);
}
//results
var fruits = ["apple","banana","orange"];
console.log(containsAny(fruits,["apple","grape"]));
console.log(containsAny(fruits,["apple","banana","pineapple"]));
console.log(containsAny(fruits,["grape", "pineapple"]));
1 Comment
You could use lodash and do:
_.intersection(originalTarget, arrayToCheck).length > 0
Set intersection is done on both collections producing an array of identical elements.
1 Comment
intersection will keep comparing even after finding the first match in order to find all of them. It's like using filter when you need just find.const areCommonElements = (arr1, arr2) => {
const arr2Set = new Set(arr2);
return arr1.some(el => arr2Set.has(el));
};
Or you can even have a better performance if you first find out which of these two arrays is longer and making Set out for the longest array, while applying some method on the shortest one:
const areCommonElements = (arr1, arr2) => {
const [shortArr, longArr] = (arr1.length < arr2.length) ? [arr1, arr2] : [arr2, arr1];
const longArrSet = new Set(longArr);
return shortArr.some(el => longArrSet.has(el));
};
7 Comments
indexOf and includes, you are the first to answer with the more efficient set-based solution, using the native Set, 4 years after it was introduced into EcmaScript. +1Set in the browser console and then hit the Enter key. You will get this response: ƒ Set() { [native code] } instead of the JS code of its implementation. While some of the native code can be slower and that's only because some of it has lots of extra validators.I wrote 3 solutions. Essentially they do the same. They return true as soon as they get true. I wrote the 3 solutions just for showing 3 different way to do things. Now, it depends what you like more. You can use performance.now() to check the performance of one solution or the other. In my solutions I'm also checking which array is the biggest and which one is the smallest to make the operations more efficient.
The 3rd solution may not be the cutest but is efficient. I decided to add it because in some coding interviews you are not allowed to use built-in methods.
Lastly, sure...we can come up with a solution with 2 NESTED for loops (the brute force way) but you want to avoid that because the time complexity is bad O(n^2).
Note:
instead of using
.includes()like some other people did, you can use.indexOf(). if you do just check if the value is bigger than 0. If the value doesn't exist will give you -1. if it does exist, it will give you greater than 0.
Which one has better performance? indexOf() for a little bit, but includes is more readable in my opinion.
If I'm not mistaken .includes() and indexOf() use loops behind the scene, so you will be at O(n^2) when using them with .some().
USING loop
const compareArraysWithIncludes = (arr1, arr2) => {
const [smallArray, bigArray] =
arr1.length < arr2.length ? [arr1, arr2] : [arr2, arr1];
for (let i = 0; i < smallArray.length; i++) {
return bigArray.includes(smallArray[i]);
}
return false;
};
USING .some()
const compareArraysWithSome = (arr1, arr2) => {
const [smallArray, bigArray] =
arr1.length < arr2.length ? [arr1, arr2] : [arr2, arr1];
return smallArray.some(c => bigArray.includes(c));
};
USING MAPS Time complexity O(2n)=>O(n)
const compararArraysUsingObjs = (arr1, arr2) => {
const map = {};
const [smallArray, bigArray] =
arr1.length < arr2.length ? [arr1, arr2] : [arr2, arr1];
for (let i = 0; i < smallArray.length; i++) {
if (!map[smallArray[i]]) {
map[smallArray[i]] = true;
}
}
for (let i = 0; i < bigArray.length; i++) {
if (map[bigArray[i]]) {
return true;
}
}
return false;
};
Code in my: stackblitz
I'm not an expert in performance nor BigO so if something that I said is wrong let me know.
4 Comments
Array#includes is implemented (tc39.es/ecma262/#sec-array.prototype.includes), it still looks like you'll have to iterate through the longer array. Unless I read the implementation of includes all wrong (which is possible haha). Also, I agree that using maps would be the most efficient..some() solution?I found this short and sweet syntax to match all or some elements between two arrays. For example
// OR operation. find if any of array2 elements exists in array1. This will return as soon as there is a first match as some method breaks when function returns TRUE
let array1 = ['a', 'b', 'c', 'd', 'e'], array2 = ['a', 'b'];
console.log(array2.some(ele => array1.includes(ele)));
// prints TRUE
// AND operation. find if all of array2 elements exists in array1. This will return as soon as there is a no first match as some method breaks when function returns TRUE
let array1 = ['a', 'b', 'c', 'd', 'e'], array2 = ['a', 'x'];
console.log(!array2.some(ele => !array1.includes(ele)));
// prints FALSE
Hope that helps someone in future!
1 Comment
You can use a nested Array.prototype.some call. This has the benefit that it will bail at the first match instead of other solutions that will run through the full nested loop.
eg.
var arr = [1, 2, 3];
var match = [2, 4];
var hasMatch = arr.some(a => match.some(m => a === m));
Comments
Just one more solution
var a1 = [1, 2, 3, 4, 5]
var a2 = [2, 4]
Check if a1 contain all element of a2
var result = a1.filter(e => a2.indexOf(e) !== -1).length === a2.length
console.log(result)
1 Comment
const result = a2.filter((e) => a1.indexOf(e) !== -1).length === a2.length;What about using a combination of some/findIndex and indexOf?
So something like this:
var array1 = ["apple","banana","orange"];
var array2 = ["grape", "pineapple"];
var found = array1.some(function(v) { return array2.indexOf(v) != -1; });
To make it more readable you could add this functionality to the Array object itself.
Array.prototype.indexOfAny = function (array) {
return this.findIndex(function(v) { return array.indexOf(v) != -1; });
}
Array.prototype.containsAny = function (array) {
return this.indexOfAny(array) != -1;
}
Note: If you'd want to do something with a predicate you could replace the inner indexOf with another findIndex and a predicate
Comments
Here is an interesting case I thought I should share.
Let's say that you have an array of objects and an array of selected filters.
let arr = [
{ id: 'x', tags: ['foo'] },
{ id: 'y', tags: ['foo', 'bar'] },
{ id: 'z', tags: ['baz'] }
];
const filters = ['foo'];
To apply the selected filters to this structure we can
if (filters.length > 0)
arr = arr.filter(obj =>
obj.tags.some(tag => filters.includes(tag))
);
// [
// { id: 'x', tags: ['foo'] },
// { id: 'y', tags: ['foo', 'bar'] }
// ]
1 Comment
Good perfomance solution:
We should transform one of arrays to object.
const contains = (arr1, mainObj) => arr1.some(el => el in mainObj);
const includes = (arr1, mainObj) => arr1.every(el => el in mainObj);
Usage:
const mainList = ["apple", "banana", "orange"];
// We make object from array, you can use your solution to make it
const main = Object.fromEntries(mainList.map(key => [key, true]));
contains(["apple","grape"], main) // => true
contains(["apple","banana","pineapple"], main) // => true
contains(["grape", "pineapple"], main) // => false
includes(["apple", "grape"], main) // => false
includes(["banana", "apple"], main) // => true
you can face with some disadvantage of checking by in operator (eg 'toString' in {} // => true), so you can change solution to obj[key] checker
Comments
Array .filter() with a nested call to .find() will return all elements in the first array that are members of the second array. Check the length of the returned array to determine if any of the second array were in the first array.
getCommonItems(firstArray, secondArray) {
return firstArray.filter((firstArrayItem) => {
return secondArray.find((secondArrayItem) => {
return firstArrayItem === secondArrayItem;
});
});
}
1 Comment
A short way of writing this:
const found = arr1.some(arr2.includes)
3 Comments
const found = arr1.some(item => arr2.includes(item)) works flawlesslyTypeError: Cannot convert undefined or null to object The change from @adammo works 👍Adding to Array Prototype
Disclaimer: Many would strongly advise against this. The only time it'd really be a problem was if a library added a prototype function with the same name (that behaved differently) or something like that.
Code:
Array.prototype.containsAny = function(arr) {
return this.some(
(v) => (arr.indexOf(v) >= 0)
)
}
Without using big arrow functions:
Array.prototype.containsAny = function(arr) {
return this.some(function (v) {
return arr.indexOf(v) >= 0
})
}
Usage
var a = ["a","b"]
console.log(a.containsAny(["b","z"])) // Outputs true
console.log(a.containsAny(["z"])) // Outputs false
Comments
My solution applies Array.prototype.some() and Array.prototype.includes() array helpers which do their job pretty efficient as well
ES6
const originalFruits = ["apple","banana","orange"];
const fruits1 = ["apple","banana","pineapple"];
const fruits2 = ["grape", "pineapple"];
const commonFruits = (myFruitsArr, otherFruitsArr) => {
return myFruitsArr.some(fruit => otherFruitsArr.includes(fruit))
}
console.log(commonFruits(originalFruits, fruits1)) //returns true;
console.log(commonFruits(originalFruits, fruits2)) //returns false;
1 Comment
When I looked at your answers, I could not find the answer I wanted. I did something myself and I want to share this with you.
It will be true only if the words entered (array) are correct.
function contains(a,b) {
let counter = 0;
for(var i = 0; i < b.length; i++) {;
if(a.includes(b[i])) counter++;
}
if(counter === b.length) return true;
return false;
}
let main_array = ['foo','bar','baz'];
let sub_array_a = ['foo','foobar'];
let sub_array_b = ['foo','bar'];
console.log(contains(main_array, sub_array_a)); // returns false
console.log(contains(main_array,sub_array_b )); // returns true
Comments
It can be done by simply iterating across the main array and check whether other array contains any of the target element or not.
Try this:
function Check(A) {
var myarr = ["apple", "banana", "orange"];
var i, j;
var totalmatches = 0;
for (i = 0; i < myarr.length; i++) {
for (j = 0; j < A.length; ++j) {
if (myarr[i] == A[j]) {
totalmatches++;
}
}
}
if (totalmatches > 0) {
return true;
} else {
return false;
}
}
var fruits1 = new Array("apple", "grape");
alert(Check(fruits1));
var fruits2 = new Array("apple", "banana", "pineapple");
alert(Check(fruits2));
var fruits3 = new Array("grape", "pineapple");
alert(Check(fruits3));
Comments
Not sure how efficient this might be in terms of performance, but this is what I use using array destructuring to keep everything nice and short:
const shareElements = (arr1, arr2) => {
const typeArr = [...arr1, ...arr2]
const typeSet = new Set(typeArr)
return typeArr.length > typeSet.size
}
Since sets cannot have duplicate elements while arrays can, combining both input arrays, converting it to a set, and comparing the set size and array length would tell you if they share any elements.
Comments
With underscorejs
var a1 = [1,2,3];
var a2 = [1,2];
_.every(a1, function(e){ return _.include(a2, e); } ); //=> false
_.every(a2, function(e){ return _.include(a1, e); } ); //=> true
2 Comments
indexOf I think the opposite :). In the other hand I agree in trying to not add external libraries if they are not really needed, but I'm not really obsessive with that, third-part libraries not only offer useful functionalities but also solid functionalities. For example: have you tested all the edge-cases and mayor-browsers with your solution?.. (by the way, every is not trying to find an index in a list but evaluating something in every element in the list)Vanilla JS with partial matching & case insensitive
The problem with some previous approaches is that they require an exact match of every word. But, What if you want to provide results for partial matches?
function search(arrayToSearch, wordsToSearch) {
arrayToSearch.filter(v =>
wordsToSearch.every(w =>
v.toLowerCase().split(" ").
reduce((isIn, h) => isIn || String(h).indexOf(w) >= 0, false)
)
)
}
//Usage
var myArray = ["Attach tag", "Attaching tags", "Blah blah blah"];
var searchText = "Tag attach";
var searchArr = searchText.toLowerCase().split(" "); //["tag", "attach"]
var matches = search(myArray, searchArr);
//Will return
//["Attach tag", "Attaching tags"]
This is useful when you want to provide a search box where users type words and the results can have those words in any order, position and case.
Comments
Update @Paul Grimshaw answer, use includes insteed of indexOf for more readable
let found = arr1.some(r=> arr2.indexOf(r)>= 0)
let found = arr1.some(r=> arr2.includes(r))
Comments
You are looking for intersection between the two arrays. And you have two major intersection types: 'every' and 'some'. Let me give you good examples:
EVERY
let brands1 = ['Ford', 'Kia', 'VW', 'Audi'];
let brands2 = ['Audi', 'Kia'];
// Find 'every' brand intersection.
// Meaning all elements inside 'brands2' must be present in 'brands1':
let intersectionEvery = brands2.every( brand => brands1.includes(brand) );
if (intersectionEvery) {
const differenceList = brands1.filter(brand => !brands2.includes(brand));
console.log('difference list:', differenceList);
const commonList = brands1.filter(brand => brands2.includes(brand));
console.log('common list:', commonList);
}
If condition is not met (like if you put 'Mercedes' in brands2) then 'intersectionEvery' won't be satisfied - will be bool false.
If condition is met it will log ["Ford", "VW"] as difference and ["Kia", "Audi"] as common list.
Sandbox: https://jsfiddle.net/bqmg14t6/
SOME
let brands1 = ['Ford', 'Kia', 'VW', 'Audi'];
let brands2 = ['Audi', 'Kia', 'Mercedes', 'Land Rover'];
// Find 'some' brand intersection.
// Meaning some elements inside 'brands2' must be also present in 'brands1':
let intersectionSome = brands2.some( brand => brands1.includes(brand) );
if (intersectionSome) {
const differenceList = brands1.filter(brand => !brands2.includes(brand));
console.log('difference list:', differenceList);
const commonList = brands1.filter(brand => brands2.includes(brand));
console.log('common list:', commonList);
}
Here we are looking for some common brands, not necessarily all.
It will log ["Ford", "VW"] as difference and ["Kia", "Audi"] as common brands.
Sandbox: https://jsfiddle.net/zkq9j3Lh/
Comments
I came up with a solution in node using underscore js like this:
var checkRole = _.intersection(['A','B'], ['A','B','C']);
if(!_.isEmpty(checkRole)) {
next();
}
Comments
Personally, I would use the following function:
var arrayContains = function(array, toMatch) {
var arrayAsString = array.toString();
return (arrayAsString.indexOf(','+toMatch+',') >-1);
}
The "toString()" method will always use commas to separate the values. Will only really work with primitive types.
2 Comments
console.log("searching Array: "+finding_array);
console.log("searching in:"+reference_array);
var check_match_counter = 0;
for (var j = finding_array.length - 1; j >= 0; j--)
{
if(reference_array.indexOf(finding_array[j]) > 0)
{
check_match_counter = check_match_counter + 1;
}
}
var match = (check_match_counter > 0) ? true : false;
console.log("Final result:"+match);
forloop and iterate over the target array. If every element is contained within the current array (usecurrent.indexOf(elem) !== -1), then they're all in there.trueorfalsethen you need to use.filter():: Javascript algorithm to find elements in array that are not in another array