Assume I have the string:
my_data = '\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@'
Where I got it is irrelevant, but for the sake of having something concrete, assume I read it from a binary file.
I know my string is the binary representation of 4 (4-byte) floats. I would like to get those floats as a numpy array. I could do:
import struct
import numpy as np
tple = struct.unpack( '4f', my_data )
my_array = np.array( tple, dtype=np.float32 )
But it seems silly to create an intermediate tuple. Is there a way to do this operation without creating an intermediate tuple?
EDIT
I would also like to be able to construct the array in such a way that I can specify the endianness of the string.
-
possible duplicate of How do I create a numpy array from string?Aurelius– Aurelius2015年02月06日 18:02:02 +00:00Commented Feb 6, 2015 at 18:02
-
@Aurelius I would say this is close, but not an exact duplicate. Though the answers are similar, this question is about floats and that question is about integers.ohmu– ohmu2015年02月06日 19:29:05 +00:00Commented Feb 6, 2015 at 19:29
2 Answers 2
>>> np.frombuffer(b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', dtype='<f4') # or dtype=np.dtype('<f4'), or np.float32 on a little-endian system (which most computers are these days)
array([ 1., 2., 3., 4.], dtype=float32)
Or, if you want big-endian:
>>> np.frombuffer(b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', dtype='>f4') # or dtype=np.dtype('>f4'), or np.float32 on a big-endian system
array([ 4.60060299e-41, 8.96831017e-44, 2.30485571e-41,
4.60074312e-41], dtype=float32)
The b isn't necessary prior to Python 3, of course.
In fact, if you actually are using a binary file to load the data from, you could even skip the using-a-string step and load the data directly from the file with numpy.fromfile().
Also, dtype reference, just in case: http://docs.scipy.org/doc/numpy/reference/arrays.dtypes.html
6 Comments
np.dtype('<f4') for little-endian (though this is the default, so isn't necessary for anything other than code clarity), np.dtype('>f4') for big-endian. So np.fromstring(b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', dtype=np.dtype('>f4')) results in array([4.60060299e-41, 8.96831017e-44, 2.30485571e-41, 4.60074312e-41], dtype=float32). Reference: docs.scipy.org/doc/numpy/reference/arrays.dtypes.html np.fromstring() is deprecated. Use np.frombuffer() instead.
import numpy as np
my_data = b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@'
# np.fromstring is deprecated
# data = np.fromstring(my_data, np.float32)
data = np.frombuffer(my_data, np.float32)
print(data)
[1. 2. 3. 4.]