You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
|
|
|
|
|
1
(2) |
2
(1) |
3
|
4
(1) |
5
(1) |
6
(5) |
7
(8) |
8
(4) |
9
|
10
(1) |
11
(1) |
12
(2) |
13
(7) |
14
(3) |
15
(4) |
16
(4) |
17
(3) |
18
(4) |
19
(5) |
20
(2) |
21
(13) |
22
(6) |
23
(5) |
24
(5) |
25
(1) |
26
(14) |
27
(2) |
28
(5) |
29
(3) |
30
(3) |
31
(4) |
|
|
|
|
|
|
yes you've got it. Thanks for the link. Just some days after posting this question i succeced and i found out the set_3d_proprierties function doing the magic. Here the clean code. import matplotlib.pyplot as plt import numpy as np from mpl_toolkits.mplot3d import Axes3D t=np.linspace(0,10,1000) x=np.sin(t) y=np.cos(t) plt.ion() fig = plt.figure() ax = fig.gca(projection='3d') line, = ax.plot(x,y,t) for i in range(400): t=np.linspace(i,i+30,1000) ax.set_zlim(i,i+100) x=np.sin(t) y=np.cos(t) line.set_data(x,y) line.set_3d_properties(t) plt.draw() -- View this message in context: http://matplotlib.1069221.n5.nabble.com/2D-data-plotted-in-a-3D-plot-by-adding-time-flow-dimension-tp45468p45493.html Sent from the matplotlib - users mailing list archive at Nabble.com.
Hi. Thanks for the suggestion. -- View this message in context: http://matplotlib.1069221.n5.nabble.com/getting-equation-from-a-surface-fit-model-tp45490p45492.html Sent from the matplotlib - users mailing list archive at Nabble.com.
This question would be much more suited for the scipy mailing list. On Fri, May 8, 2015 at 2:19 AM, diffracteD <abh...@gm...> wrote: > Hi. > I have a data set like following: > x = [2.06, 2.07, 2.14, 2.09, 2.2, 2.05, 1.92, 2.06, 2.11, 2.07] > y = [171.82, 170.8, 159.59, 164.28, 169.98, 162.23, 167.37, 173.81,166.66, > 155.13] > z = [-1.41, -1.26, -1.07, -1.07, -1.46, -0.95, -0.08, -1.28, -1.2, -0.86] > > Using matplotlib, scipy.linalg.lstsq function I've got a surface-fit model. > But is it possible to print the "equation of the surface ??" > Found no clue in documentation page. > > Please help ! > thank you. > > > > -- > View this message in context: > http://matplotlib.1069221.n5.nabble.com/getting-equation-from-a-surface-fit-model-tp45490.html > Sent from the matplotlib - users mailing list archive at Nabble.com. > > > ------------------------------------------------------------------------------ > One dashboard for servers and applications across Physical-Virtual-Cloud > Widest out-of-the-box monitoring support with 50+ applications > Performance metrics, stats and reports that give you Actionable Insights > Deep dive visibility with transaction tracing using APM Insight. > http://ad.doubleclick.net/ddm/clk/290420510;117567292;y > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >
Hi. I have a data set like following: x = [2.06, 2.07, 2.14, 2.09, 2.2, 2.05, 1.92, 2.06, 2.11, 2.07] y = [171.82, 170.8, 159.59, 164.28, 169.98, 162.23, 167.37, 173.81,166.66, 155.13] z = [-1.41, -1.26, -1.07, -1.07, -1.46, -0.95, -0.08, -1.28, -1.2, -0.86] Using matplotlib, scipy.linalg.lstsq function I've got a surface-fit model. But is it possible to print the "equation of the surface ??" Found no clue in documentation page. Please help ! thank you. -- View this message in context: http://matplotlib.1069221.n5.nabble.com/getting-equation-from-a-surface-fit-model-tp45490.html Sent from the matplotlib - users mailing list archive at Nabble.com.