You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1
(3) |
2
|
3
(1) |
4
(2) |
5
(6) |
6
(3) |
7
(2) |
8
(1) |
9
|
10
(1) |
11
|
12
|
13
|
14
|
15
|
16
|
17
(1) |
18
(3) |
19
(2) |
20
|
21
|
22
|
23
|
24
|
25
|
26
|
27
(1) |
28
|
29
|
30
(2) |
31
(4) |
|
|
|
|
I get the following weird error when I switch x and y coordinates on a set of points File "min_working_example.py", line 8, in <module> triang = tria.Triangulation(coords[:,1],coords[:,0]) File "/usr/lib/pymodules/python2.7/matplotlib/tri/triangulation.py", line 72, in __init__ dt = delaunay.Triangulation(self.x, self.y) File "/usr/lib/pymodules/python2.7/matplotlib/delaunay/triangulate.py", line 123, in __init__ self.hull = self._compute_convex_hull() File "/usr/lib/pymodules/python2.7/matplotlib/delaunay/triangulate.py", line 158, in _compute_convex_hull hull.append(edges.pop(hull[-1])) KeyError: 0 I have attached the set of points here and a minimum working example which can generate this error. This is with matplotlib 1.3 Thanks, Subramanya Code: from pylab import * import matplotlib.tri as tria coords = loadtxt("data.txt") fig = figure() ax = fig.add_subplot(111) triang = tria.Triangulation(coords[:,0],coords[:,1]) ax.triplot(triang) savefig('a.png') triang2 = tria.Triangulation(coords[:,1],coords[:,0]) Data -6.500000000000004663e-01 -8.660254037844383745e-01 -6.500000000000003553e-01 -6.062177826491067512e-01 -6.500000000000003553e-01 -3.464101615137751833e-01 -6.500000000000002442e-01 -8.660254037844355990e-02 -6.500000000000001332e-01 1.732050807568880635e-01 -6.500000000000000222e-01 4.330127018922196869e-01 -6.499999999999999112e-01 6.928203230275513658e-01 -6.499999999999998002e-01 9.526279441628826561e-01 -4.250000000000004885e-01 -9.959292143521041307e-01 -4.250000000000003220e-01 -7.361215932167725073e-01 -4.250000000000002665e-01 -4.763139720814408840e-01 -4.250000000000001554e-01 -2.165063509461093161e-01 -4.250000000000000444e-01 4.330127018922230731e-02 -4.249999999999999334e-01 3.031088913245539307e-01 -4.249999999999998224e-01 5.629165124598856096e-01 -4.249999999999997669e-01 8.227241335952174550e-01 -2.000000000000003442e-01 -8.660254037844382635e-01 -2.000000000000002331e-01 -6.062177826491067512e-01 -2.000000000000001499e-01 -3.464101615137751278e-01 -2.000000000000000389e-01 -8.660254037844355990e-02 -1.999999999999999556e-01 1.732050807568881190e-01 -1.999999999999998446e-01 4.330127018922196869e-01 -1.999999999999997613e-01 6.928203230275513658e-01 2.499999999999980016e-02 -7.361215932167725073e-01 2.499999999999985567e-02 -4.763139720814409950e-01 2.499999999999999445e-02 -2.165063509461093716e-01 2.500000000000007772e-02 4.330127018922225179e-02 2.500000000000017486e-02 3.031088913245538752e-01 2.500000000000029976e-02 5.629165124598854986e-01 2.499999999999998335e-01 -6.062177826491067512e-01 2.499999999999999722e-01 -3.464101615137752388e-01 2.500000000000001110e-01 -8.660254037844355990e-02 2.500000000000002220e-01 1.732050807568880080e-01 2.500000000000002776e-01 4.330127018922196314e-01 4.749999999999999778e-01 -4.763139720814410505e-01 4.750000000000000888e-01 -2.165063509461093993e-01 4.750000000000001998e-01 4.330127018922216853e-02 4.750000000000003109e-01 3.031088913245537642e-01 7.000000000000000666e-01 -3.464101615137752388e-01 7.000000000000001776e-01 -8.660254037844367092e-02 7.000000000000002887e-01 1.732050807568879525e-01 9.250000000000002665e-01 -2.165063509461093716e-01 9.250000000000004885e-01 4.330127018922221710e-02 1.150000000000000355e+00 -8.660254037844382358e-02