You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
|
1
(10) |
2
(17) |
3
(14) |
4
(28) |
5
(23) |
6
(12) |
7
(3) |
8
(11) |
9
(29) |
10
(31) |
11
(9) |
12
(35) |
13
(3) |
14
(9) |
15
(16) |
16
(14) |
17
(10) |
18
(7) |
19
(3) |
20
|
21
(4) |
22
(6) |
23
(14) |
24
(16) |
25
(10) |
26
(5) |
27
(4) |
28
(8) |
29
(19) |
30
(21) |
|
|
|
|
Eric Firing wrote: > Xavier Gnata wrote: >> Hi, >> >> I'm trying to modify the imshow colormapping on the flight: >> >> http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize >> >> "Colormapping typically involves two steps: a data array is first >> mapped onto the range 0-1 using an instance of Normalize >> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> >> or of a subclass; then this number in the 0-1 range is mapped to a >> color using an instance of a subclass of Colormap >> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" >> >> >> How should I modify the way "data array is first mapped onto the >> range 0-1"? >> I would like to map all the values <T1 to 0, all the values>T1 to 1 >> and use an affine function to map all the others values into ]0,1[. >> In a more generic way, how should I modify the way the normalization >> step is >> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> >> performed? >> I could modify the values to be displayed but it is ugly. > > Functions and methods that take cmap kwargs also take norm kwargs; > they work together. The Normalize subclass instance passed in via the > norm kwarg is what does the mapping of the original data to the 0-1 > range. For examples, see lib/matplotlib/colors.py, which has the > Normalize base class and the LogNorm, BoundaryNorm, and NoNorm > subclasses. > > Eric Ok. So I just create class MyNorm(matplotlib.colors.Normalize) and call imshow(A,cmap=cmap_xmap(lambda x:x,get_cmap("hot")),norm=MyNorm) That looks easy :) Thanks. Xavier
Xavier Gnata wrote: > Hi, > > I'm trying to modify the imshow colormapping on the flight: > > http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize > "Colormapping typically involves two steps: a data array is first mapped > onto the range 0-1 using an instance of Normalize > <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> > or of a subclass; then this number in the 0-1 range is mapped to a color > using an instance of a subclass of Colormap > <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" > > > How should I modify the way "data array is first mapped onto the range 0-1"? > I would like to map all the values <T1 to 0, all the values>T1 to 1 and > use an affine function to map all the others values into ]0,1[. In a > more generic way, how should I modify the way the normalization step is > <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> > performed? > I could modify the values to be displayed but it is ugly. Functions and methods that take cmap kwargs also take norm kwargs; they work together. The Normalize subclass instance passed in via the norm kwarg is what does the mapping of the original data to the 0-1 range. For examples, see lib/matplotlib/colors.py, which has the Normalize base class and the LogNorm, BoundaryNorm, and NoNorm subclasses. Eric > > > It is easy to modify the values of the second step of Colormapping: > from pylab import * > from numpy import * > > def G(i,j): > return exp(-((i-100)**2+(j-100)**2)/50.) > > def cmap_xmap(function,cmapInput): > cdict = cmapInput._segmentdata.copy() > function_to_map = lambda x : (function(x[0]), x[1], x[2]) > for key in ('red','green','blue'): > cdict[key] = map(function_to_map, cdict[key]) > cdict[key].sort() > return matplotlib.colors.LinearSegmentedColormap('MyMap',cdict,1024) > > A=fromfunction(G,(200,200)) > imshow(A,cmap=cmap_xmap(lambda x:x**60,get_cmap("hot"))) > > but it does no help. > > Xavier > > ------------------------------------------------------------------------------ > OpenSolaris 2009.06 is a cutting edge operating system for enterprises > looking to deploy the next generation of Solaris that includes the latest > innovations from Sun and the OpenSource community. Download a copy and > enjoy capabilities such as Networking, Storage and Virtualization. > Go to: http://p.sf.net/sfu/opensolaris-get > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
Hi, I'm trying to modify the imshow colormapping on the flight: http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize "Colormapping typically involves two steps: a data array is first mapped onto the range 0-1 using an instance of Normalize <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> or of a subclass; then this number in the 0-1 range is mapped to a color using an instance of a subclass of Colormap <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" How should I modify the way "data array is first mapped onto the range 0-1"? I would like to map all the values <T1 to 0, all the values>T1 to 1 and use an affine function to map all the others values into ]0,1[. In a more generic way, how should I modify the way the normalization step is <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> performed? I could modify the values to be displayed but it is ugly. It is easy to modify the values of the second step of Colormapping: from pylab import * from numpy import * def G(i,j): return exp(-((i-100)**2+(j-100)**2)/50.) def cmap_xmap(function,cmapInput): cdict = cmapInput._segmentdata.copy() function_to_map = lambda x : (function(x[0]), x[1], x[2]) for key in ('red','green','blue'): cdict[key] = map(function_to_map, cdict[key]) cdict[key].sort() return matplotlib.colors.LinearSegmentedColormap('MyMap',cdict,1024) A=fromfunction(G,(200,200)) imshow(A,cmap=cmap_xmap(lambda x:x**60,get_cmap("hot"))) but it does no help. Xavier