SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S

1
(10)
2
(17)
3
(14)
4
(28)
5
(23)
6
(12)
7
(3)
8
(11)
9
(29)
10
(31)
11
(9)
12
(35)
13
(3)
14
(9)
15
(16)
16
(14)
17
(10)
18
(7)
19
(3)
20
21
(4)
22
(6)
23
(14)
24
(16)
25
(10)
26
(5)
27
(4)
28
(8)
29
(19)
30
(21)




Showing 3 results of 3

From: Xavier G. <xav...@gm...> - 2009年06月07日 20:52:46
Eric Firing wrote:
> Xavier Gnata wrote:
>> Hi,
>>
>> I'm trying to modify the imshow colormapping on the flight:
>>
>> http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize 
>>
>> "Colormapping typically involves two steps: a data array is first 
>> mapped onto the range 0-1 using an instance of Normalize 
>> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
>> or of a subclass; then this number in the 0-1 range is mapped to a 
>> color using an instance of a subclass of Colormap 
>> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" 
>>
>>
>> How should I modify the way "data array is first mapped onto the 
>> range 0-1"?
>> I would like to map all the values <T1 to 0, all the values>T1 to 1 
>> and use an affine function to map all the others values into ]0,1[. 
>> In a more generic way, how should I modify the way the normalization 
>> step is 
>> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
>> performed?
>> I could modify the values to be displayed but it is ugly.
>
> Functions and methods that take cmap kwargs also take norm kwargs; 
> they work together. The Normalize subclass instance passed in via the 
> norm kwarg is what does the mapping of the original data to the 0-1 
> range. For examples, see lib/matplotlib/colors.py, which has the 
> Normalize base class and the LogNorm, BoundaryNorm, and NoNorm 
> subclasses.
>
> Eric
Ok. So I just create class MyNorm(matplotlib.colors.Normalize) and call 
imshow(A,cmap=cmap_xmap(lambda x:x,get_cmap("hot")),norm=MyNorm)
That looks easy :)
Thanks.
Xavier
From: Eric F. <ef...@ha...> - 2009年06月07日 17:18:49
Xavier Gnata wrote:
> Hi,
> 
> I'm trying to modify the imshow colormapping on the flight:
> 
> http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize
> "Colormapping typically involves two steps: a data array is first mapped 
> onto the range 0-1 using an instance of Normalize 
> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
> or of a subclass; then this number in the 0-1 range is mapped to a color 
> using an instance of a subclass of Colormap 
> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" 
> 
> 
> How should I modify the way "data array is first mapped onto the range 0-1"?
> I would like to map all the values <T1 to 0, all the values>T1 to 1 and 
> use an affine function to map all the others values into ]0,1[. In a 
> more generic way, how should I modify the way the normalization step is 
> <http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
> performed?
> I could modify the values to be displayed but it is ugly.
Functions and methods that take cmap kwargs also take norm kwargs; they 
work together. The Normalize subclass instance passed in via the norm 
kwarg is what does the mapping of the original data to the 0-1 range. 
For examples, see lib/matplotlib/colors.py, which has the Normalize base 
class and the LogNorm, BoundaryNorm, and NoNorm subclasses.
Eric
> 
> 
> It is easy to modify the values of the second step of Colormapping:
> from pylab import *
> from numpy import *
> 
> def G(i,j):
> return exp(-((i-100)**2+(j-100)**2)/50.)
> 
> def cmap_xmap(function,cmapInput):
> cdict = cmapInput._segmentdata.copy()
> function_to_map = lambda x : (function(x[0]), x[1], x[2])
> for key in ('red','green','blue'):
> cdict[key] = map(function_to_map, cdict[key])
> cdict[key].sort()
> return matplotlib.colors.LinearSegmentedColormap('MyMap',cdict,1024)
> 
> A=fromfunction(G,(200,200))
> imshow(A,cmap=cmap_xmap(lambda x:x**60,get_cmap("hot")))
> 
> but it does no help.
> 
> Xavier
> 
> ------------------------------------------------------------------------------
> OpenSolaris 2009.06 is a cutting edge operating system for enterprises 
> looking to deploy the next generation of Solaris that includes the latest 
> innovations from Sun and the OpenSource community. Download a copy and 
> enjoy capabilities such as Networking, Storage and Virtualization. 
> Go to: http://p.sf.net/sfu/opensolaris-get
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
From: Xavier G. <xav...@gm...> - 2009年06月07日 11:46:15
Hi,
I'm trying to modify the imshow colormapping on the flight:
http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize
"Colormapping typically involves two steps: a data array is first mapped 
onto the range 0-1 using an instance of Normalize 
<http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
or of a subclass; then this number in the 0-1 range is mapped to a color 
using an instance of a subclass of Colormap 
<http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Colormap>" 
How should I modify the way "data array is first mapped onto the range 0-1"?
I would like to map all the values <T1 to 0, all the values>T1 to 1 and 
use an affine function to map all the others values into ]0,1[. In a 
more generic way, how should I modify the way the normalization step is 
<http://matplotlib.sourceforge.net/api/colors_api.html?highlight=linearsegmentedcolormap#matplotlib.colors.Normalize> 
performed?
I could modify the values to be displayed but it is ugly.
It is easy to modify the values of the second step of Colormapping:
from pylab import *
from numpy import *
def G(i,j):
 return exp(-((i-100)**2+(j-100)**2)/50.)
def cmap_xmap(function,cmapInput):
 cdict = cmapInput._segmentdata.copy()
 function_to_map = lambda x : (function(x[0]), x[1], x[2])
 for key in ('red','green','blue'):
 cdict[key] = map(function_to_map, cdict[key])
 cdict[key].sort()
 return matplotlib.colors.LinearSegmentedColormap('MyMap',cdict,1024)
A=fromfunction(G,(200,200))
imshow(A,cmap=cmap_xmap(lambda x:x**60,get_cmap("hot")))
but it does no help.
Xavier

Showing 3 results of 3

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /