SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S






1
(6)
2
(3)
3
(4)
4
(1)
5
(19)
6
(8)
7
(3)
8
9
10
(9)
11
(3)
12
(8)
13
(17)
14
(5)
15
(2)
16
(2)
17
(7)
18
(2)
19
(4)
20
(6)
21
22
(5)
23
24
(7)
25
(2)
26
(3)
27
(9)
28
(9)
29
(6)
30
(3)
31
(8)





Showing 8 results of 8

From: Ryan M. <rm...@gm...> - 2014年03月06日 22:19:13
On Sat, Feb 8, 2014 at 10:48 AM, Alan G Isaac <ai...@am...> wrote:
> The documentation for FuncAnimation says
>
> http://matplotlib.org/api/animation_api.html#matplotlib.animation.FuncAnimation
>
> Makes an animation by repeatedly calling a function func,
> passing in (optional) arguments in fargs.
>
> frames can be a generator, an iterable, or a number of frames.
>
> I do not think FuncAnimation can be understood from this
> documentation. (At least, I did not understand it.)
> I think it should read:
>
> Makes an animation by repeatedly calling a function `func`,
> passing in a value from `frames` and any (optional) arguments in
> `fargs`.
>
> `frames` can be a generator, an iterable, or an integer number of
> frames.
> Passing `frames=n` for integer `n` is equivalent to passing
> `range(n)`.
>
> Does this seem correct?
>
> Thanks,
> Alan Isaac
>
> PS It would be nice if repeat accepted an integer number of repetitions.
>
That does sound correct to me. (I'll apologize for the broken English in
the docs).
Any chance you could file an issue, and maybe one on the repeat? (I agree
this would be nice to have).
Ryan
-- 
Ryan May
Graduate Research Assistant
School of Meteorology
University of Oklahoma
From: Ryan M. <rm...@gm...> - 2014年03月06日 22:16:27
On Mon, Feb 24, 2014 at 2:44 PM, Derek Pyne <dp...@ba...> wrote:
> Does anyone know the preferred method for stopping FuncAnimation? I am
> using it to record data from a oscilloscope and woud like to be able to
> pause and restart the data on demand. Is there any way I can send a button
> click event to it?
>
There's an event_source() method that can be called to get the class that's
controlling when animation events get fired (usually a timer, but you can
provide custom ones). You should be able to call start() and stop() on it.
Ryan
-- 
Ryan May
Graduate Research Assistant
School of Meteorology
University of Oklahoma
From: Eric F. <ef...@ha...> - 2014年03月06日 18:04:20
On 2014年03月06日 4:18 AM, Asma Riyaz wrote:
> Hi,
>
> I am stuck at setting the color bar minimum and maximum values,
> according to what I found I need to set ticks to a numpy linspace array.
> Here is my code:
>
> *threshold=1.01
>
> fig = plt.figure(figsize=(25,25))
> plt.suptitle(file_handle.replace('.csv',''),fontsize=22)
> cmap.set_over('green')
> cmap.set_under('grey')
> gs=gridspec.GridSpec(1, 2,height_ratios=[1,1,-2,2]
> ,width_ratios=[2,1,-2,2],hspace=0,wspace=0)
>
> phyl_ax=plt.subplot(gs[0])
> ht_ax=plt.subplot(gs[1])
>
> ht_ax.set_xlim(34,0)
> ht_ax.set_ylim(34,0)
>
>
> cb_ax,kw =mpl.colorbar.make_axes(ht_ax, shrink=0.65)
>
> plt.setp(phyl_ax.get_xticklabels(),visible=False)
> plt.setp(phyl_ax.get_yticklabels(),visible=False)
> plt.setp(ht_ax.get_xticklabels(),visible=True)
> plt.setp(ht_ax.get_yticklabels(),visible=True)
> plt.setp(phyl_ax.get_xticklines(),visible=False)
> plt.setp(phyl_ax.get_yticklines(),visible=False)
> plt.setp(ht_ax.get_xticklines(),visible=True)
> plt.setp(ht_ax.get_yticklines(),visible=True)
>
>
> img =
> ht_ax.imshow(data,cmap=cmap,interpolation='none',vmin=-1.0,vmax=threshold,aspect='auto')
> v = np.linspace(-1.0, 1.0, 15, endpoint=True)
> cb =
> mpl.colorbar.ColorbarBase(ax=cb_ax,cmap=cmap,ticks=v,extend='neither',**kw)
> cb.cmap.set_over('green')
> img= mpimg.imread('/home/asmariyaz/Desktop/mytree.png')
> phyl_ax.imshow(img,interpolation='bilinear',aspect='auto')
> *
>
Why are you using ColorbarBase instead of using fig.colorbar? By doing 
so, you are not getting the logic that ties the colorbar to the 
color-mapped object to which it applies.
Eric
> The problem that arises is that the color bar's extent always shows up
> from 0 to 1, though I set the ticks from -1 to 1?
> I also noticed that in a dataset where I have a negative value, the
> color bar still shows up as 0 to 1.
>
> Could anyone guide me? Appreciate your help!!
>
> Asma
>
>
>
>
>
>
>
>
> ------------------------------------------------------------------------------
> Subversion Kills Productivity. Get off Subversion & Make the Move to Perforce.
> With Perforce, you get hassle-free workflows. Merge that actually works.
> Faster operations. Version large binaries. Built-in WAN optimization and the
> freedom to use Git, Perforce or both. Make the move to Perforce.
> http://pubads.g.doubleclick.net/gampad/clk?id=122218951&iu=/4140/ostg.clktrk
>
>
>
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>
From: Goyo <goy...@gm...> - 2014年03月06日 17:33:27
2014年03月05日 21:13 GMT+01:00 Adam Hughes <hug...@gm...>:
> Thanks Andreas. That is correct; however, I'd rather not make this change
> global. I only want a subset of my plots to have this behavior. I feel
> like changing the rcparams would change this globally and probably confuse
> users who don't know this is being called.
Try using rc_context:
with plt.rc_context(rc={'axes.color_cycle': ['orange', default_cycle[1::]]}):
 plt.plot(...)
This should change the color cycle only within the scope of the with
clause (not tested with this particular rcparam).
Goyo
From: Neal B. <ndb...@gm...> - 2014年03月06日 16:49:53
I've seen examples for 2 axis using twinx, and examples using subplothost.
Any reason to choose one over the other?
From: Asma R. <asm...@gm...> - 2014年03月06日 14:20:14
Yes the interpolation had to be set to nearest or bicubic or bilinear for
it to function properly!!
Thanks a lot!!
Asma
On Thu, Mar 6, 2014 at 4:48 AM, Pierre Haessig <pie...@cr...>wrote:
> Le 05/03/2014 22:37, Asma Riyaz a écrit :
>
> img= mpimg.imread('/home/asmariyaz/Desktop/mytree.png')
> phyl_ax.imshow(img,interpolation='nearest')
>
> Ok, so here you could try replace 'nearest' by 'bilinear' or 'bicubic'. I
> believe those are the most common choices for image resampling (because
> when you plot an image and then save it, there is a resampling involved).
> (http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow for
> the other options)
>
> Of course, it's also worth playing the dpi argument of savefig, as
> suggested by Eric.
>
> best,
> Pierre
>
>
> ------------------------------------------------------------------------------
> Subversion Kills Productivity. Get off Subversion & Make the Move to
> Perforce.
> With Perforce, you get hassle-free workflows. Merge that actually works.
> Faster operations. Version large binaries. Built-in WAN optimization and
> the
> freedom to use Git, Perforce or both. Make the move to Perforce.
>
> http://pubads.g.doubleclick.net/gampad/clk?id=122218951&iu=/4140/ostg.clktrk
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>
>
From: Asma R. <asm...@gm...> - 2014年03月06日 14:18:43
Hi,
I am stuck at setting the color bar minimum and maximum values, according
to what I found I need to set ticks to a numpy linspace array. Here is my
code:
* threshold=1.01 fig = plt.figure(figsize=(25,25))
plt.suptitle(file_handle.replace('.csv',''),fontsize=22)
cmap.set_over('green') cmap.set_under('grey') gs=gridspec.GridSpec(1,
2,height_ratios=[1,1,-2,2] ,width_ratios=[2,1,-2,2],hspace=0,wspace=0)
phyl_ax=plt.subplot(gs[0]) ht_ax=plt.subplot(gs[1])
ht_ax.set_xlim(34,0) ht_ax.set_ylim(34,0) cb_ax,kw
=mpl.colorbar.make_axes(ht_ax, shrink=0.65)
plt.setp(phyl_ax.get_xticklabels(),visible=False)
plt.setp(phyl_ax.get_yticklabels(),visible=False)
plt.setp(ht_ax.get_xticklabels(),visible=True)
plt.setp(ht_ax.get_yticklabels(),visible=True)
plt.setp(phyl_ax.get_xticklines(),visible=False)
plt.setp(phyl_ax.get_yticklines(),visible=False)
plt.setp(ht_ax.get_xticklines(),visible=True)
plt.setp(ht_ax.get_yticklines(),visible=True) img =
ht_ax.imshow(data,cmap=cmap,interpolation='none',vmin=-1.0,vmax=threshold,aspect='auto')
v = np.linspace(-1.0, 1.0, 15, endpoint=True) cb =
mpl.colorbar.ColorbarBase(ax=cb_ax,cmap=cmap,ticks=v,extend='neither',**kw)
cb.cmap.set_over('green') img=
mpimg.imread('/home/asmariyaz/Desktop/mytree.png')
phyl_ax.imshow(img,interpolation='bilinear',aspect='auto')*
The problem that arises is that the color bar's extent always shows up from
0 to 1, though I set the ticks from -1 to 1?
I also noticed that in a dataset where I have a negative value, the color
bar still shows up as 0 to 1.
Could anyone guide me? Appreciate your help!!
Asma
From: Pierre H. <pie...@cr...> - 2014年03月06日 09:49:06
Le 05/03/2014 22:37, Asma Riyaz a écrit :
> img= mpimg.imread('/home/asmariyaz/Desktop/mytree.png')
> phyl_ax.imshow(img,interpolation='nearest')
Ok, so here you could try replace 'nearest' by 'bilinear' or 'bicubic'.
I believe those are the most common choices for image resampling
(because when you plot an image and then save it, there is a resampling
involved).
(http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.imshow for
the other options)
Of course, it's also worth playing the dpi argument of savefig, as
suggested by Eric.
best,
Pierre

Showing 8 results of 8

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /