SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S





1
(4)
2
(4)
3
4
(5)
5
6
(9)
7
(1)
8
(1)
9
(1)
10
11
(2)
12
(6)
13
(5)
14
(3)
15
(1)
16
(1)
17
(2)
18
(7)
19
(1)
20
(4)
21
(8)
22
(3)
23
(3)
24
25
(1)
26
(3)
27
(5)
28
(3)
29
30

Showing 5 results of 5

From: Ivan L. <iv...@wh...> - 2013年11月04日 16:49:17
After a bit of digging I found that the problem is caused by the line:
KPX Y ydieresis -'0
in the font files jkplmsc8a.afm and jkpmsc8a.afm installed with the
package texlive-fonts-extra. When afm.py parses this line it fails because
it can't convert the last token "-'0" to float.
I don't know much about AFM so I'm not sure what is the best way to fix
this. Should I modify afm.py to handle this line (remove the single quote)
or edit the afm files? And to whom should I send a bug report, matplotlib
or texlive-fonts-extra?
Thanks,
- Ivan
--
Ivan Lima
Woods Hole Oceanographic Institution, MC&G MS #25
360 Woods Hole Road, Woods Hole, MA 02543-1543 USA
On Fri, Nov 1, 2013 at 5:13 PM, Ivan Lima <iv...@wh...> wrote:
> After upgrading to matplotlib 1.3.1-1 importing matplotlib.pyplot fails
> with the error:
>
> Python 2.7.5+ (default, Sep 17 2013, 15:31:50)
> [GCC 4.8.1] on linux2
> Type "help", "copyright", "credits" or "license" for more information.
> >>> import matplotlib.pyplot
> Found an unknown keyword in AFM header (was Each)
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was Each)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was Each)
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was Each)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Found an unknown keyword in AFM header (was )
> Found an unknown keyword in AFM header (was The)
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Value error parsing header in AFM: UnderlinePosition -41,5039
> Value error parsing header in AFM: UnderlineThickness 43,9453
> Traceback (most recent call last):
>
> File "<stdin>", line 1, in <module>
> File "/usr/lib/pymodules/python2.7/matplotlib/pyplot.py", line 24, in
> <module>
> import matplotlib.colorbar
> File "/usr/lib/pymodules/python2.7/matplotlib/colorbar.py", line 29, in
> <module>
> import matplotlib.collections as collections
> File "/usr/lib/pymodules/python2.7/matplotlib/collections.py", line 23,
> in <module>
> import matplotlib.backend_bases as backend_bases
> File "/usr/lib/pymodules/python2.7/matplotlib/backend_bases.py", line
> 50, in <module>
> import matplotlib.textpath as textpath
> File "/usr/lib/pymodules/python2.7/matplotlib/textpath.py", line 11, in
> <module>
> import matplotlib.font_manager as font_manager
> File "/usr/lib/pymodules/python2.7/matplotlib/font_manager.py", line
> 1356, in <module>
> _rebuild()
> File "/usr/lib/pymodules/python2.7/matplotlib/font_manager.py", line
> 1341, in _rebuild
> fontManager = FontManager()
> File "/usr/lib/pymodules/python2.7/matplotlib/font_manager.py", line
> 1008, in __init__
> self.afmlist = createFontList(self.afmfiles, fontext='afm')
> File "/usr/lib/pymodules/python2.7/matplotlib/font_manager.py", line
> 563, in createFontList
> font = afm.AFM(fh)
> File "/usr/lib/pymodules/python2.7/matplotlib/afm.py", line 342, in
> __init__
> parse_afm(fh)
> File "/usr/lib/pymodules/python2.7/matplotlib/afm.py", line 331, in
> parse_afm
> doptional = _parse_optional(fh)
> File "/usr/lib/pymodules/python2.7/matplotlib/afm.py", line 313, in
> _parse_optional
> d[key] = optional[key](fh)
> File "/usr/lib/pymodules/python2.7/matplotlib/afm.py", line 246, in
> _parse_kern_pairs
> c1, c2, val = _to_str(vals[1]), _to_str(vals[2]), _to_float(vals[3])
> ValueError: could not convert string to float: -'0
>
> The problem is with the Adobe Font Metric. Has anyone run into this
> problem and found a solution or workaround? Any help is greatly appreciated.
>
> My system is Debian testing with Python 2.7.5 and NumPy 1.7.1-3.
>
> Thanks,
> --
> Ivan Lima
> Woods Hole Oceanographic Institution, MC&G MS #25
> 360 Woods Hole Road, Woods Hole, MA 02543-1543 USA
>
From: Benjamin Trendelkamp-S. <tre...@ze...> - 2013年11月04日 09:03:55
Hi,
I'd recommend to load the binary data and store it as a numpy ndarray,
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
If your data is one-dimensional you can simply use matplotlib.pyplot.hist,
http://matplotlib.org/api/pyplot_api.html
to plot the histogram. The 'normed' keyword argument allows matplotlib
to normalize the histogram so that the plot will show the pdf.
In order to unpack the data-files you need to know the binary format.
Can you please provide more information about that.
Best,
Benjamin
On 04.11.2013 07:03, Sourav Chatterjee wrote:
> I have binary files containing some discrete data. I need to calculate
> the probability density function (pdf) and plot the same. Do I need to
> unpack the data files? How? For plotting the pdf what module is easier?
>
> -- 
> Sourav Chatterjee
> Trainee Scientist
> Indian Institute of Tropical Meteorology, Pune 
>
>
> ------------------------------------------------------------------------------
> Android is increasing in popularity, but the open development platform that
> developers love is also attractive to malware creators. Download this white
> paper to learn more about secure code signing practices that can help keep
> Android apps secure.
> http://pubads.g.doubleclick.net/gampad/clk?id=65839951&iu=/4140/ostg.clktrk
>
>
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
-- 
Benjamin Trendelkamp-Schroer
Freie Universität Berlin
FB Mathematik + Informatik
Institut für Mathematik
Arnimallee 6 
D-14195 Berlin-Dahlem
tre...@ze...
+49-(0)30-838-75364
From: Sourav C. <sr...@gm...> - 2013年11月04日 06:03:16
I have binary files containing some discrete data. I need to calculate the
probability density function (pdf) and plot the same. Do I need to unpack
the data files? How? For plotting the pdf what module is easier?
-- 
Sourav Chatterjee
Trainee Scientist
Indian Institute of Tropical Meteorology, Pune
In article <211...@co...>,
 Piet van Oostrum <pi...@va...> wrote:
> I tried to install matplotlib 1.3.1 on the release candidates of Python 2.7.6 
> and 3.3.3.
[...]
Please open an issue on the Python bug tracker for the Python component of 
this.
http://bugs.python.org
-- 
 Ned Deily,
 na...@ac...
Hello,
I tried to install matplotlib 1.3.1 on the release candidates of Python 2.7.6 and 3.3.3.
I am on Mac OS X 10.6.8.
Although the installation gave no problems, there is a problem with Tcl/Tk.
The new Pythons have their own embedded Tcl/Tk, but when installing matplotlib it links to the Frameworks version of Tcl and TK, not to the embedded version. This causes confusion when importing matplotlib.pyplot:
objc[70648]: Class TKApplication is implemented in both /Library/Frameworks/Python.framework/Versions/2.7/lib/libtk8.5.dylib and /Library/Frameworks/Tk.framework/Versions/8.5/Tk. One of the two will be used. Which one is undefined.
objc[70648]: Class TKMenu is implemented in both /Library/Frameworks/Python.framework/Versions/2.7/lib/libtk8.5.dylib and /Library/Frameworks/Tk.framework/Versions/8.5/Tk. One of the two will be used. Which one is undefined.
objc[70648]: Class TKContentView is implemented in both /Library/Frameworks/Python.framework/Versions/2.7/lib/libtk8.5.dylib and /Library/Frameworks/Tk.framework/Versions/8.5/Tk. One of the two will be used. Which one is undefined.
objc[70648]: Class TKWindow is implemented in both /Library/Frameworks/Python.framework/Versions/2.7/lib/libtk8.5.dylib and /Library/Frameworks/Tk.framework/Versions/8.5/Tk. One of the two will be used. Which one is undefined.
And then later it gives a lot of error messages.
So I think it should be linked to the embedded version. For this the matplotlib setupext.py should be adapted to find out if there is an embedded Tcl/Tk in the Python installation and set the link parameters accordingly. However, the installed Python versions (from the DMG's) do not contain the Tcl/Tk header files, only the shared library and the tcl files. So I thing the distributed Python should also include the Tcl/Tk header files.
-- 
Piet van Oostrum <pi...@va...>
WWW: http://pietvanoostrum.com/
PGP key: [8DAE142BE17999C4]

Showing 5 results of 5

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /