SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S



1
(22)
2
(14)
3
(3)
4
(2)
5
(2)
6
(3)
7
(2)
8
(5)
9
(19)
10
(9)
11
(8)
12
(4)
13
(14)
14
(5)
15
(4)
16
(8)
17
(4)
18
(5)
19
(4)
20
(17)
21
(14)
22
(15)
23
(7)
24
(6)
25
26
(1)
27
(4)
28
(5)
29
(6)
30
(8)
31
(3)

Showing 3 results of 3

From: Arnold M. <arn...@wu...> - 2004年12月03日 23:08:03
Dear all,
At the moment I'm heavily using the scatter plot (great!). But if I want =
to add
a color bar (with the command colorbar(), directly following the call to
scatter) to explain the meaning of the colors of the patches, matplotlib =
(0.64)
refuses to make a colorbar with the following message:
First define a mappable image (eg imshow, figimage, pcolor, scatter
I checked how colorbar knows that the plot under consideration is a 'mapp=
able
image': it calls gci() . And indeed, if I do that by hand, after a plot w=
ith
scatter, I get the message that there is no mappable image.
According to the doc's and the error message above, the patches plotted b=
y
scatter should count as a mappable image, but apparently, they don't.
Is this a bug or a misunderstanding on my side?
Regards,
Arnold
PS: at the moment I'm using a workaround, by making my own colorbar comma=
nd:
just stealing the code from the original routine, but without getting the
colors and number ranges from the image itself (I have to define those by
hand).
> Date: 2004年12月02日 10:04:20 +0100
> From: Nils Wagner <nw...@me...>
> To: SciPy Developers List <sci...@sc...>
> Cc: mat...@li...
> Subject: [Matplotlib-users] Feature request : Comparison of sparse matrices is not implemented.
> 
> Hi all,
> 
> I tried to visualize the structure of large and sparse matrices using
> 
> from matplotlib.colors import LinearSegmentedColormap
> from matplotlib.matlab import *
> from scipy import *
> import IPython
> 
> def spy2(Z):
> """
> SPY(Z) plots the sparsity pattern of the matrix S as an image
> """
> 
> #binary colormap min white, max black
> cmapdata = {
> 'red' : ((0., 1., 1.), (1., 0., 0.)),
> 'green': ((0., 1., 1.), (1., 0., 0.)),
> 'blue' : ((0., 1., 1.), (1., 0., 0.))
> }
> binary = LinearSegmentedColormap('binary', cmapdata, 2)
> 
> Z = where(Z>0,1.,0.)
> imshow(transpose(Z), interpolation='nearest', cmap=binary)
> 
> rows, cols, entries, rep, field, symm = io.mminfo('k0.mtx')
> print 'number of rows, cols and entries', rows, cols, entries
> print 'Start reading matrix - this may take a minute'
> ma = io.mmread('k0.mtx')
> print 'Finished'
> flag = 1
> if flag == 1:
> spy2(ma)
> show()
> 
> It failed. Is it somehow possible to visualize sparse matrices ?
> Any suggestion would be appreciated.
To plot sparsity patterns, I read matrices in MatrixMarket format using 
the PySparse package. Once I have arrays with row and column indices, I 
simply use scatter() with arguments to modify the size of the 'bubbles' 
and their color (and alpha) depending on the magnitude on the nonzero 
element. The result is great. Of course when matrices are symmetric, you 
only hold the lower (or upper) triangular part, then tell scatter() to 
plot the other triangle.
Dominique
Hi all,
Can someone help me with imshow() for sparse matrices ?
Nils
 

Showing 3 results of 3

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /