You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
|
|
|
|
|
1
|
2
(1) |
3
(1) |
4
(3) |
5
(1) |
6
(5) |
7
(7) |
8
|
9
|
10
(1) |
11
(7) |
12
(2) |
13
|
14
(1) |
15
(4) |
16
(1) |
17
|
18
|
19
|
20
|
21
(12) |
22
(1) |
23
|
24
(2) |
25
(4) |
26
(1) |
27
(15) |
28
(7) |
29
(4) |
30
(2) |
31
(1) |
|
|
|
|
|
|
slaps forehead... Joe, you just won the "duh!" moment of the month award! Cheers! Ben Root On Thu, Aug 28, 2014 at 10:18 PM, Joe Kington <jof...@gm...> wrote: > Why not just use boolean indexing? > > E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <= > 10)": > > In [1]: import numpy as np > > In [2]: x, y = np.mgrid[-10:10, -10:10] > > In [3]: z = np.hypot(x, y) > > In [4]: result = (z >= 5) & (z <= 10) > > In [5]: result.astype(int) > Out[5]: > array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], > [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], > [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], > [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], > [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], > [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]]) > > Cheers, > -Joe > > > > On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote: > >> On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote: >> > Hi Matplotlib Users! >> > >> > >> > >> > I have some 2-d arrays, which i am displaying with implot, and deriving >> > contours for with contour. Easy - I'm just pulling them out of >> > collections[0].get_paths() . >> > >> > However what's not easy is that I would like to recover a 1-0 or >> > True-False array of the array values (pixels) that fall within the >> > contours. Some line crossing algorithm/floodfill could do it, but I >> > guess that matplotlib's fill() or contourf() must do this under the hood >> > anyway. I've looked into the output both functions, but I don't see >> > anything obvious.. >> > >> > Does anybody know if there's an a way to pull out a such an array from >> > matplotlib? Any pointers are appreciated! >> >> Make an array of (x, y) pairs from the X and Y you use in your call to >> contour, and then feed that array to the contains_points() method of >> your contour Path. This will give you the desired Boolean array for any >> given Path; depending on what you want, you might need to combine arrays >> for more than one Path. >> >> To get closed paths, I think you will want to use contourf, not contour. >> >> Eric >> >> >> >> > >> > Cheers, >> > Matt >> > >> > >> > >> ------------------------------------------------------------------------------ >> > Slashdot TV. >> > Video for Nerds. Stuff that matters. >> > http://tv.slashdot.org/ >> > >> > >> > >> > _______________________________________________ >> > Matplotlib-users mailing list >> > Mat...@li... >> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >> > >> >> >> >> ------------------------------------------------------------------------------ >> Slashdot TV. >> Video for Nerds. Stuff that matters. >> http://tv.slashdot.org/ >> _______________________________________________ >> Matplotlib-users mailing list >> Mat...@li... >> https://lists.sourceforge.net/lists/listinfo/matplotlib-users >> > > > > ------------------------------------------------------------------------------ > Slashdot TV. > Video for Nerds. Stuff that matters. > http://tv.slashdot.org/ > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > >
Joe and list, This is off topic, but can you point me to good documentation on the use of '&' as opposed to numpy.logical_and ? Thanks, Sterling On Aug 28, 2014, at 7:18PM, Joe Kington wrote: > Why not just use boolean indexing? > > E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <= 10)": > > In [1]: import numpy as np > > In [2]: x, y = np.mgrid[-10:10, -10:10] > > In [3]: z = np.hypot(x, y) > > In [4]: result = (z >= 5) & (z <= 10) > > In [5]: result.astype(int) > Out[5]: > array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], > [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], > [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], > [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], > [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], > [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], > [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], > [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]]) > > Cheers, > -Joe > > > > On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote: > On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote: > > Hi Matplotlib Users! > > > > > > > > I have some 2-d arrays, which i am displaying with implot, and deriving > > contours for with contour. Easy - I'm just pulling them out of > > collections[0].get_paths() . > > > > However what's not easy is that I would like to recover a 1-0 or > > True-False array of the array values (pixels) that fall within the > > contours. Some line crossing algorithm/floodfill could do it, but I > > guess that matplotlib's fill() or contourf() must do this under the hood > > anyway. I've looked into the output both functions, but I don't see > > anything obvious.. > > > > Does anybody know if there's an a way to pull out a such an array from > > matplotlib? Any pointers are appreciated! > > Make an array of (x, y) pairs from the X and Y you use in your call to > contour, and then feed that array to the contains_points() method of > your contour Path. This will give you the desired Boolean array for any > given Path; depending on what you want, you might need to combine arrays > for more than one Path. > > To get closed paths, I think you will want to use contourf, not contour. > > Eric > > > > > > > Cheers, > > Matt > > > > > > ------------------------------------------------------------------------------ > > Slashdot TV. > > Video for Nerds. Stuff that matters. > > http://tv.slashdot.org/ > > > > > > > > _______________________________________________ > > Matplotlib-users mailing list > > Mat...@li... > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > ------------------------------------------------------------------------------ > Slashdot TV. > Video for Nerds. Stuff that matters. > http://tv.slashdot.org/ > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > ------------------------------------------------------------------------------ > Slashdot TV. > Video for Nerds. Stuff that matters. > http://tv.slashdot.org/_______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
Why not just use boolean indexing? E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <= 10)": In [1]: import numpy as np In [2]: x, y = np.mgrid[-10:10, -10:10] In [3]: z = np.hypot(x, y) In [4]: result = (z >= 5) & (z <= 10) In [5]: result.astype(int) Out[5]: array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]]) Cheers, -Joe On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote: > On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote: > > Hi Matplotlib Users! > > > > > > > > I have some 2-d arrays, which i am displaying with implot, and deriving > > contours for with contour. Easy - I'm just pulling them out of > > collections[0].get_paths() . > > > > However what's not easy is that I would like to recover a 1-0 or > > True-False array of the array values (pixels) that fall within the > > contours. Some line crossing algorithm/floodfill could do it, but I > > guess that matplotlib's fill() or contourf() must do this under the hood > > anyway. I've looked into the output both functions, but I don't see > > anything obvious.. > > > > Does anybody know if there's an a way to pull out a such an array from > > matplotlib? Any pointers are appreciated! > > Make an array of (x, y) pairs from the X and Y you use in your call to > contour, and then feed that array to the contains_points() method of > your contour Path. This will give you the desired Boolean array for any > given Path; depending on what you want, you might need to combine arrays > for more than one Path. > > To get closed paths, I think you will want to use contourf, not contour. > > Eric > > > > > > > Cheers, > > Matt > > > > > > > ------------------------------------------------------------------------------ > > Slashdot TV. > > Video for Nerds. Stuff that matters. > > http://tv.slashdot.org/ > > > > > > > > _______________________________________________ > > Matplotlib-users mailing list > > Mat...@li... > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > > ------------------------------------------------------------------------------ > Slashdot TV. > Video for Nerds. Stuff that matters. > http://tv.slashdot.org/ > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >
On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote: > Hi Matplotlib Users! > > > > I have some 2-d arrays, which i am displaying with implot, and deriving > contours for with contour. Easy - I'm just pulling them out of > collections[0].get_paths() . > > However what's not easy is that I would like to recover a 1-0 or > True-False array of the array values (pixels) that fall within the > contours. Some line crossing algorithm/floodfill could do it, but I > guess that matplotlib's fill() or contourf() must do this under the hood > anyway. I've looked into the output both functions, but I don't see > anything obvious.. > > Does anybody know if there's an a way to pull out a such an array from > matplotlib? Any pointers are appreciated! Make an array of (x, y) pairs from the X and Y you use in your call to contour, and then feed that array to the contains_points() method of your contour Path. This will give you the desired Boolean array for any given Path; depending on what you want, you might need to combine arrays for more than one Path. To get closed paths, I think you will want to use contourf, not contour. Eric > > Cheers, > Matt > > > ------------------------------------------------------------------------------ > Slashdot TV. > Video for Nerds. Stuff that matters. > http://tv.slashdot.org/ > > > > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >