SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S





1
2
(1)
3
(1)
4
(3)
5
(1)
6
(5)
7
(7)
8
9
10
(1)
11
(7)
12
(2)
13
14
(1)
15
(4)
16
(1)
17
18
19
20
21
(12)
22
(1)
23
24
(2)
25
(4)
26
(1)
27
(15)
28
(7)
29
(4)
30
(2)
31
(1)






Showing 4 results of 4

From: Benjamin R. <ben...@ou...> - 2014年08月29日 13:28:43
slaps forehead...
Joe, you just won the "duh!" moment of the month award!
Cheers!
Ben Root
On Thu, Aug 28, 2014 at 10:18 PM, Joe Kington <jof...@gm...>
wrote:
> Why not just use boolean indexing?
>
> E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <=
> 10)":
>
> In [1]: import numpy as np
>
> In [2]: x, y = np.mgrid[-10:10, -10:10]
>
> In [3]: z = np.hypot(x, y)
>
> In [4]: result = (z >= 5) & (z <= 10)
>
> In [5]: result.astype(int)
> Out[5]:
> array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])
>
> Cheers,
> -Joe
>
>
>
> On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote:
>
>> On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote:
>> > Hi Matplotlib Users!
>> >
>> >
>> >
>> > I have some 2-d arrays, which i am displaying with implot, and deriving
>> > contours for with contour. Easy - I'm just pulling them out of
>> > collections[0].get_paths() .
>> >
>> > However what's not easy is that I would like to recover a 1-0 or
>> > True-False array of the array values (pixels) that fall within the
>> > contours. Some line crossing algorithm/floodfill could do it, but I
>> > guess that matplotlib's fill() or contourf() must do this under the hood
>> > anyway. I've looked into the output both functions, but I don't see
>> > anything obvious..
>> >
>> > Does anybody know if there's an a way to pull out a such an array from
>> > matplotlib? Any pointers are appreciated!
>>
>> Make an array of (x, y) pairs from the X and Y you use in your call to
>> contour, and then feed that array to the contains_points() method of
>> your contour Path. This will give you the desired Boolean array for any
>> given Path; depending on what you want, you might need to combine arrays
>> for more than one Path.
>>
>> To get closed paths, I think you will want to use contourf, not contour.
>>
>> Eric
>>
>>
>>
>> >
>> > Cheers,
>> > Matt
>> >
>> >
>> >
>> ------------------------------------------------------------------------------
>> > Slashdot TV.
>> > Video for Nerds. Stuff that matters.
>> > http://tv.slashdot.org/
>> >
>> >
>> >
>> > _______________________________________________
>> > Matplotlib-users mailing list
>> > Mat...@li...
>> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>> >
>>
>>
>>
>> ------------------------------------------------------------------------------
>> Slashdot TV.
>> Video for Nerds. Stuff that matters.
>> http://tv.slashdot.org/
>> _______________________________________________
>> Matplotlib-users mailing list
>> Mat...@li...
>> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>>
>
>
>
> ------------------------------------------------------------------------------
> Slashdot TV.
> Video for Nerds. Stuff that matters.
> http://tv.slashdot.org/
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>
>
From: Sterling S. <sm...@fu...> - 2014年08月29日 05:19:03
Joe and list,
This is off topic, but can you point me to good documentation on the use of '&' as opposed to numpy.logical_and ?
Thanks,
Sterling
On Aug 28, 2014, at 7:18PM, Joe Kington wrote:
> Why not just use boolean indexing? 
> 
> E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <= 10)":
> 
> In [1]: import numpy as np
> 
> In [2]: x, y = np.mgrid[-10:10, -10:10]
> 
> In [3]: z = np.hypot(x, y)
> 
> In [4]: result = (z >= 5) & (z <= 10)
> 
> In [5]: result.astype(int)
> Out[5]: 
> array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
> [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
> [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
> [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
> [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])
> 
> Cheers,
> -Joe
> 
> 
> 
> On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote:
> On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote:
> > Hi Matplotlib Users!
> >
> >
> >
> > I have some 2-d arrays, which i am displaying with implot, and deriving
> > contours for with contour. Easy - I'm just pulling them out of
> > collections[0].get_paths() .
> >
> > However what's not easy is that I would like to recover a 1-0 or
> > True-False array of the array values (pixels) that fall within the
> > contours. Some line crossing algorithm/floodfill could do it, but I
> > guess that matplotlib's fill() or contourf() must do this under the hood
> > anyway. I've looked into the output both functions, but I don't see
> > anything obvious..
> >
> > Does anybody know if there's an a way to pull out a such an array from
> > matplotlib? Any pointers are appreciated!
> 
> Make an array of (x, y) pairs from the X and Y you use in your call to
> contour, and then feed that array to the contains_points() method of
> your contour Path. This will give you the desired Boolean array for any
> given Path; depending on what you want, you might need to combine arrays
> for more than one Path.
> 
> To get closed paths, I think you will want to use contourf, not contour.
> 
> Eric
> 
> 
> 
> >
> > Cheers,
> > Matt
> >
> >
> > ------------------------------------------------------------------------------
> > Slashdot TV.
> > Video for Nerds. Stuff that matters.
> > http://tv.slashdot.org/
> >
> >
> >
> > _______________________________________________
> > Matplotlib-users mailing list
> > Mat...@li...
> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> >
> 
> 
> ------------------------------------------------------------------------------
> Slashdot TV.
> Video for Nerds. Stuff that matters.
> http://tv.slashdot.org/
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> 
> ------------------------------------------------------------------------------
> Slashdot TV. 
> Video for Nerds. Stuff that matters.
> http://tv.slashdot.org/_______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
From: Joe K. <jof...@gm...> - 2014年08月29日 02:18:27
Why not just use boolean indexing?
E.g. to find the region that falls between 5 and 10, do "(z >=5) & (z <=
10)":
In [1]: import numpy as np
In [2]: x, y = np.mgrid[-10:10, -10:10]
In [3]: z = np.hypot(x, y)
In [4]: result = (z >= 5) & (z <= 10)
In [5]: result.astype(int)
Out[5]:
array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
 [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
 [0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
 [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
 [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
 [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
 [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0]])
Cheers,
-Joe
On Thu, Aug 28, 2014 at 8:23 PM, Eric Firing <ef...@ha...> wrote:
> On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote:
> > Hi Matplotlib Users!
> >
> >
> >
> > I have some 2-d arrays, which i am displaying with implot, and deriving
> > contours for with contour. Easy - I'm just pulling them out of
> > collections[0].get_paths() .
> >
> > However what's not easy is that I would like to recover a 1-0 or
> > True-False array of the array values (pixels) that fall within the
> > contours. Some line crossing algorithm/floodfill could do it, but I
> > guess that matplotlib's fill() or contourf() must do this under the hood
> > anyway. I've looked into the output both functions, but I don't see
> > anything obvious..
> >
> > Does anybody know if there's an a way to pull out a such an array from
> > matplotlib? Any pointers are appreciated!
>
> Make an array of (x, y) pairs from the X and Y you use in your call to
> contour, and then feed that array to the contains_points() method of
> your contour Path. This will give you the desired Boolean array for any
> given Path; depending on what you want, you might need to combine arrays
> for more than one Path.
>
> To get closed paths, I think you will want to use contourf, not contour.
>
> Eric
>
>
>
> >
> > Cheers,
> > Matt
> >
> >
> >
> ------------------------------------------------------------------------------
> > Slashdot TV.
> > Video for Nerds. Stuff that matters.
> > http://tv.slashdot.org/
> >
> >
> >
> > _______________________________________________
> > Matplotlib-users mailing list
> > Mat...@li...
> > https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> >
>
>
>
> ------------------------------------------------------------------------------
> Slashdot TV.
> Video for Nerds. Stuff that matters.
> http://tv.slashdot.org/
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>
From: Eric F. <ef...@ha...> - 2014年08月29日 01:23:30
On 2014年08月28日, 3:02 AM, Matthew Czesarski wrote:
> Hi Matplotlib Users!
>
>
>
> I have some 2-d arrays, which i am displaying with implot, and deriving
> contours for with contour. Easy - I'm just pulling them out of
> collections[0].get_paths() .
>
> However what's not easy is that I would like to recover a 1-0 or
> True-False array of the array values (pixels) that fall within the
> contours. Some line crossing algorithm/floodfill could do it, but I
> guess that matplotlib's fill() or contourf() must do this under the hood
> anyway. I've looked into the output both functions, but I don't see
> anything obvious..
>
> Does anybody know if there's an a way to pull out a such an array from
> matplotlib? Any pointers are appreciated!
Make an array of (x, y) pairs from the X and Y you use in your call to 
contour, and then feed that array to the contains_points() method of 
your contour Path. This will give you the desired Boolean array for any 
given Path; depending on what you want, you might need to combine arrays 
for more than one Path.
To get closed paths, I think you will want to use contourf, not contour.
Eric
>
> Cheers,
> Matt
>
>
> ------------------------------------------------------------------------------
> Slashdot TV.
> Video for Nerds. Stuff that matters.
> http://tv.slashdot.org/
>
>
>
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
>

Showing 4 results of 4

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /