SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S





1
(5)
2
(6)
3
(4)
4
(9)
5
(7)
6
(16)
7
(5)
8
(10)
9
(2)
10
(3)
11
(9)
12
(1)
13
(13)
14
(1)
15
(13)
16
(5)
17
(3)
18
(14)
19
(17)
20
(14)
21
(15)
22
(6)
23
(6)
24
25
(4)
26
(4)
27
(4)
28
(11)
29
(7)
30
(1)

Showing 6 results of 6

From: Goyo <goy...@gm...> - 2011年04月23日 23:01:15
2011年4月23日 _olivier_ <ol...@gm...>:
> [...]
> I have got a matrix 6x500 (so one size is much biggger than the other one)
> and I try to expand the shorter axe so that the labels on it are well
> displayed (not overlapped.
Use the aspect kwarg in matshow.
Goyo
From: _olivier_ <ol...@gm...> - 2011年04月23日 21:07:22
Not sure this message was sent successfully. So I send it again. Sorry if you
receive it twice...
Hello,
This question has certainly been answered in a previous thread but after
searching around I did not find any solution...
I have got a matrix 6x500 (so one size is much biggger than the other one)
and I try to expand the shorter axe so that the labels on it are well
displayed (not overlapped.
I am googling/searching on the documentation about subplots_adjust, ... but
did not find any solution.
Here is the code that present the problem I have.
Thanks in advance for any help. Olivier
import numpy as np
from matplotlib.pylab import *
import matplotlib.pyplot as plt
sizeX = 6
sizeY = 500
xlabels = []
ylabels = []
for i in range ( 0, sizeX ):
 xlabels.append( str( i ) )
for i in range ( 0, sizeY ):
 ylabels.append( str( i ) )
dims = ( sizeX, sizeY )
data = zeros( dims )
for i in range( 0, sizeX ):
 for j in range( 0, sizeY ):
 data[ i, j ] = np.random.rand()
figure = plt.figure()
axes = figure.add_subplot( 111 )
cax = axes.matshow( data, interpolation = 'nearest' )
col = figure.colorbar( cax )
plt.show()
-- 
View this message in context: http://old.nabble.com/Try-to-have-none-overlapping-labels-in-one-axe-using-matshow-tp31456159p31456159.html
Sent from the matplotlib - users mailing list archive at Nabble.com.
From: Goyo <goy...@gm...> - 2011年04月23日 12:42:13
Attachments: sample.py sample.png
2011年4月23日 jfortiv <jf...@gm...>:
>
> Hi,
>
> This actually did not work for me. Can you show me the full code that you
> used to successfully produce the time-format x-axis labels?
See attached files.
Goyo
From: jfortiv <jf...@gm...> - 2011年04月23日 08:48:24
Hi,
This actually did not work for me. Can you show me the full code that you
used to successfully produce the time-format x-axis labels?
Thanks,
James
Sebastian Berg wrote:
> 
> Hello,
> 
> don't know the foo behind it, but using
> ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S'))
> works.
> 
> Regards,
> 
> Sebastian
> 
> On Sun, 2011年04月17日 at 19:52 -0700, jfortiv wrote:
> 
>> Hello, 
>> 
>> I'm trying to create a bar chart that looks something like a gannt
>> chart...
>> 
>> See the simple example here:
>> 
>> http://www.promana.net/making-use-of-gantt-charts/
>> 
>> I'm trying to utilize barh() and fmt_xdata to accomplish this with the
>> following:
>> 
>> #~~~~~~~~~~~~~~~~~~~~~~~
>> 
>> date1 = datetime.datetime( 2000, 3, 2)
>> date2 = datetime.datetime( 2000, 3, 6)
>> delta = datetime.timedelta(hours=6)
>> dates = mdates.drange(date1, date2, delta)
>> 
>> val = mdates.drange(date1,date2,delta) # the bar lengths
>> pos = range(len(val)) # the bar centers on the y axis
>> height=0.5 # the bar height
>> left=mdates.drange(date1,date2,delta) # the bar starting position
>> 
>> fig = plt.figure()
>> ax = fig.add_subplot(111)
>> ax.barh(pos,val,height=height,left=left,align='center',alpha=0.3)
>> ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d %H:%M:%S')
>> 
>> #~~~~~~~~~~~~~~~~~~~~~~~
>> 
>> 
>> Even with ax.fmt_xdata, I'm simply getting numbers on the x-axis instead
>> of
>> dates. Can anyone offer some pointers?
>> 
>> Thanks,
>> James
> 
> 
> 
> ------------------------------------------------------------------------------
> Benefiting from Server Virtualization: Beyond Initial Workload 
> Consolidation -- Increasing the use of server virtualization is a top
> priority.Virtualization can reduce costs, simplify management, and improve 
> application availability and disaster protection. Learn more about
> boosting 
> the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev
> _______________________________________________
> Matplotlib-users mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-users
> 
> 
-- 
View this message in context: http://old.nabble.com/Date-format-the-x-axis-of-a-barh%28%29-plot--tp31420395p31460691.html
Sent from the matplotlib - users mailing list archive at Nabble.com.
From: Paul I. <piv...@gm...> - 2011年04月23日 01:19:17
Hi Xavier,
Xavier Gnata, on 2011年04月23日 02:33, wrote:
> Imagine you have this code:
> 
> import numpy as np
> import matplotlib.cm as cm
> import matplotlib.mlab as mlab
> import matplotlib.pyplot as plt
> 
> delta = 0.25
> x = y = np.arange(-3.0, 3.0, delta)
> X, Y = np.meshgrid(x, y)
> Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
> Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
> Z = Z2-Z1 # difference of Gaussians
> 
> plt.imshow(Z, interpolation='nearest', cmap=cm.gray, origin='lower', extent=[-3,3,-3,3])
> Then you want to change the color of a few pixels to red.
> You have a list of coordinates (i,j) and each pixel in this list should 
> now be red.
> 
> I could play with masked arrays like in:
> http://matplotlib.sourceforge.net/examples/pylab_examples/image_masked.html
> but I would prefer a simple "display this pixel (i,j) in red whatever 
> his value is" function.
Since you're using a gray color map for that image, you won't be
able to set a particular pixel to red. You'll have to either
overlay a new image that would be masked out everywhere except
for the pixels you want to change, as you mentioned, or create
new image patches at the corresponding positions like this:
 idx2im = lambda i,j: (x[i],x[j+1],y[i],y[j+1] )
 plt.imshow([[.9]], extent=idx2im(12,12), cmap =cm.jet, origin='lower',vmin=0,vmax=1)
or something like this:
 plt.Rectangle((x[10],y[10]),width=delta,height=delta,color='red')
 ax = plt.gca()
 ax.add_artist(r)
 plt.draw()
best,
-- 
Paul Ivanov
314 address only used for lists, off-list direct email at:
http://pirsquared.org | GPG/PGP key id: 0x0F3E28F7 
From: Xavier G. <xav...@gm...> - 2011年04月23日 00:33:29
Hi,
Imagine you have this code:
import numpy as np
import matplotlib.cm as cm
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
delta = 0.25
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
Z = Z2-Z1 # difference of Gaussians
plt.imshow(Z, interpolation='nearest', cmap=cm.gray, origin='lower', extent=[-3,3,-3,3])
Then you want to change the color of a few pixels to red.
You have a list of coordinates (i,j) and each pixel in this list should 
now be red.
I could play with masked arrays like in:
http://matplotlib.sourceforge.net/examples/pylab_examples/image_masked.html
but I would prefer a simple "display this pixel (i,j) in red whatever 
his value is" function.
Xavier

Showing 6 results of 6

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /