SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S




1
(27)
2
(15)
3
(2)
4
(4)
5
(5)
6
(9)
7
(15)
8
(24)
9
(19)
10
(7)
11
(13)
12
(26)
13
(27)
14
(17)
15
(14)
16
(12)
17
(9)
18
(12)
19
(17)
20
(19)
21
(5)
22
(5)
23
(7)
24
(4)
25
(1)
26
(9)
27
(20)
28
(5)
29
(10)
30
(12)
31
(6)

Showing 5 results of 5

From: Goyo <goy...@gm...> - 2012年03月21日 16:59:49
El día 21 de marzo de 2012 01:03, questions anon
> f=np.genfromtxt(inputfile, skip_header=6, dtype=None, names=True)
I don't think you should be using dtype=None if you wand a 2D array.
Also the names=True thing makes no sense to me since there isn't a row
with field names. Try just this and I guess you'll get a 2D array:
f=np.genfromtxt(inputfile, skip_header=6)
Goyo
From: gsal <sal...@gm...> - 2012年03月21日 16:35:56
I liked the plot very much, too. I want to start using python and matplotlib
for my everyday engineering calculations and could use any handy matplotlib
samples. This in particular looks great, compare to the
copied-and-copied-and-copied-over black-and-white scanned-in plot in the
design manual...no, I am not quite a fluid dynamics kind of guy, but
sometimes I need to do such job, anyway.
So, good job and thanks for contributing.
-- 
View this message in context: http://old.nabble.com/sample-to-contribute-to-mpl-gallery-tp33541388p33544585.html
Sent from the matplotlib - users mailing list archive at Nabble.com.
From: Wolfgang D. <wdr...@dr...> - 2012年03月21日 16:11:17
On 2012年3月12日 15:51:15 -0500
Benjamin Root <ben...@ou...> wrote:
> Ah, finally figured it out. The issue is that your y-value for that
> error bar is 9.114, but you want to plot error bars that are
> +/-10.31. That line gets thrown out by matplotlib because you can't
> plot at negative values for log scale.
Yes, I came to the same conclusion. I think matplotlib should print
some warning or raise some exception if confronted with data like that,
it can't handle.
> There is a trick that might
> work. The set_yscale method has a kwarg "nonposy" which could be set
> to "clip". You could also try setting to the "symlog" scale which
> might let you get away with a negative value.
I'll try that.
Thanks
Wolfgang
From: Tony Yu <ts...@gm...> - 2012年03月21日 01:06:30
On Tue, Mar 20, 2012 at 4:10 PM, Daniel Hyams <dh...@gm...> wrote:
> There was a request a while back to create plots that are more
> application-oriented for the matplotlib gallery, so I'd like to submit this
> one for inclusion. I tried to spruce it up a bit to show what MPL can do,
> and I'm sure that the folks here can improve upon it. But at any rate,
> this is a good first iteration I think.
>
> I'm also going to try to replace the plot at wikipedia (for the Moody
> diagram) with this one. The one at wikipedia is not quite correct in the
> way friction factors are computed, and a nice side effect is that mpl gets
> some exposure there as well (although there are probably dozens of mpl
> plots already there, but I don't know how to find them).
>
> The below is meant as constructive criticism; I certainly am committed to
> using matplotlib and offering patches here and there as I can; I would love
> to see wider adoption of it. I also concede that in the below items, I
> might have missed something obvious. I'm trying to approach this as a user
> who was just introduced to matplotlib, and had to create the plot that is
> attached.
>
> 1) The table mechanism, while very nice and useful, could use some
> improvement; it should be easier to specify alignment for the table cells,
> and individual fonts for each cell.
> 2) drawing the arrows was much harder than it needs to be. Better
> defaults for arrowhead sizes would help a lot (instead of them being
> hardcoded to certain numbers, have the defaults be fungible based on how
> long the arrow is in pixel space), and I had to resort to using the
> annotate() function to draw them, after spending over an hour trying to use
> plt.arrow(). plt.arrow() had some problems drawing arrowheads on log-log
> plots, and well as not supporting a double-ended arrow.
> 3) drawing the shading using polygons was great and easy.
> 4) the title by default is placed too close to the top
> 5) the plot axis labels were clipped by default; had to pull the axis
> limits in (I know, this is a longstanding thing, but a new user would
> wrinkle their nose)
>
> All in all, the plot took a lot longer to make than I had anticipated;
> mainly due to some fussing with the issues above until I found something
> that worked.
>
> Hope that you find the sample useful.
>
> --
> Daniel Hyams
> dh...@gm...
>
I'm not one of the mpl-developers, so I can't speak about the likelihood of
inclusion, but I do think it's a great plot (esp. since my background is in
fluid mechanics). I think it'd be a great example to have, especially if
the gallery gets split up into different
categories<https://github.com/matplotlib/matplotlib/pull/714>.
(Personally,
I think it would be nice to have a category for complex, application-style
examples, and multiple categories for simplified-versions of most of the
current examples).
I agree with most of your points, but I don't have much to add on anything
except for #2: Drawing arrows has been painful for me as well. If I find
the time, I plan on putting together a PR which draws arrows using a
FancyArrowPatch and a Line2D object. Although, `annotate` works great for
it's designed purpose, it can be cumbersome for drawing simple arrows.
-Tony
From: questions a. <que...@gm...> - 2012年03月21日 00:03:47
thanks for all of your responses. I agree with Benjamin that I have two
issues, and firstly I need to figure out importing the text to a 2d array
before plotting.
I can take this question elsewhere but will run it by you first:
My problem seems to be that when I use np.genfromtxt it imports my 2d array
as a 1d array. I have tried using np.reshape
import numpy as np
inputfile=r"d:/BoMdata/r19000117.txt"
outputfolder=r"d:/BoMdata/outputfolder"
f=np.genfromtxt(inputfile, skip_header=6, dtype=None, names=True)
print "f is: ", f[1:2]
print "f shape: ", f.shape
print "f dtype: ", f.dtype
print "f size: ", f.size
print f.reshape(691, 886)
f is: [ (0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 9.49085e-05, 0.00056383, 0.00132367, 0.00417144, 0.00618987,
0.00776004, 0.0094961, 0.011557, 0.0139465, 0.0166607, 0.019674, 0.0229193,
0.0262693, 0.0295119, 0.0323237, 0.0342322, 0.0341227, 0.0288054,
0.0163089, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.00245558, 0.0309294, 0.0521848, 0.0663444, 0.0706948,
0.0681689, 0.0633213, 0.0575578, 0.0514137, 0.0452683, 0.0393741,
0.0338871, 0.0288934, 0.0244262, 0.0204939, 0.0170896, 0.014127, 0.0115916,
0.00944895, 0.00765294, 0.00615862, 0.00486124, 0.00325027, 0.000950427,
9.23129e-05, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)]
f shape: (690,)
f dtype: [('0', '<i4'), ('0_1', '<i4'), ('0_2', '<i4'), ('0_3', '<i4'),
('0_4', '<i4'), ('0_5', '<i4'), ('0_6', '<i4'), ('0_7', '<i4'), ('0_8',
'<f8'), ('0_9', '<f8'), ('0_10', '<f8'), ('0_11', '<f8'), ('0_12', '<f8'),
('0_13', '<f8'), ('0_14', '<f8'), ('0_15', '<f8'), ('0_16', '<f8'),
('0_17', '<f8'), ('0_18', '<f8'), ('0_19', '<f8'), ('0_20', '<f8'),
('0_21', '<f8'), ('0_22', '<f8'), ('0_23', '<f8'), ('0_24', '<f8'),
('0_25', '<f8'), ('0_26', '<f8'), ('0_27', '<f8'), ('0_28', '<f8'),
('0_29', '<f8'), ('0_30', '<f8'), ('0_31', '<f8'), ('0_32', '<f8'),
('0_33', '<f8'), ('0_34', '<f8'), ('0_35', '<f8'), ('0_36', '<f8'),
('0_37', '<f8'), ('0_38', '<f8'), ('0_39', '<f8'), ('0_40', '<f8'),
('0_41', '<f8'), ('0_42', '<f8'), ('0_43', '<f8'), ('0_44', '<f8'),
('0_45', '<f8'), ('0_46', '<f8'), ('0_47', '<f8'), ('0_48', '<f8'),
('0_49', '<f8'), ('0_50', '<f8'), ('0_51', '<f8'), ('0_52', '<f8'),
('0_53', '<f8'), ('0_54', '<f8'), ('0_55', '<f8'), ('0_56', '<f8'),
('0_57', '<f8'), ('0_58', '<f8'), ('0_59', '<f8'), ('0_60', '<f8'),
('0_61', '<f8'), ('0_62', '<f8'), ('0_63', '<f8'), ('0_64', '<f8'),
('0_65', '<f8'), ('0_66', '<f8'), ('0_67', '<f8'), ('0_68', '<f8'),
('0_69', '<f8'), ('0_70', '<f8'), ('0_71', '<f8'), ('0_72', '<f8'),
('0_73', '<f8'), ('0_74', '<f8'), ('0_75', '<f8'), ('0_76', '<f8'),
('0_77', '<f8'), ('0_78', '<f8'), ('0_79', '<f8'), ('0_80', '<f8'),
('0_81', '<f8'), ('0_82', '<f8'), ('0_83', '<f8'), ('0_84', '<f8'),
('0_85', '<f8'), ('0_86', '<f8'), ('0_87', '<f8'), ('0_88', '<f8'),
('0_89', '<f8'), ('0_90', '<f8'), ('0_91', '<f8'), ('0_92', '<f8'),
('0_93', '<f8'), ('0_94', '<f8'), ('0_95', '<f8'), ('0_96', '<f8'),
('0_97', '<f8'), ('0_98', '<f8'), ('0_99', '<f8'), ('0_100', '<f8'),
('0_101', '<f8'), ('0_102', '<f8'), ('0_103', '<f8'), ('0_104', '<f8'),
('0_105', '<f8'), ('0_106', '<f8'), ('0_107', '<f8'), ('0_108', '<f8'),
('0_109', '<f8'), ('0_110', '<f8'), ('0_111', '<f8'), ('0_112', '<f8'),
('0_113', '<f8'), ('0_114', '<f8'), ('0_115', '<f8'), ('0_116', '<f8'),
('0_117', '<f8'), ('0_118', '<f8'), ('0_119', '<f8'), ('0_120', '<f8'),
('0_121', '<f8'), ('0_122', '<f8'), ('0_123', '<f8'), ('0_124', '<f8'),
('0_125', '<f8'), ('0_126', '<f8'), ('0_127', '<f8'), ('0_128', '<f8'),
('0_129', '<f8'), ('0_130', '<f8'), ('0_131', '<f8'), ('0_132', '<f8'),
('0_133', '<f8'), ('0_134', '<f8'), ('0_135', '<f8'), ('0_136', '<f8'),
('0_137', '<f8'), ('0_138', '<f8'), ('0_139', '<f8'), ('0_140', '<f8'),
('0_141', '<f8'), ('0_142', '<f8'), ('0_143', '<f8'), ('0_144', '<f8'),
('0_145', '<f8'), ('0_146', '<f8'), ('0_147', '<f8'), ('0_148', '<f8'),
('0_149', '<f8'), ('0_150', '<f8'), ('0_151', '<f8'), ('0_152', '<f8'),
('0_153', '<f8'), ('0_154', '<f8'), ('0_155', '<f8'), ('0_156', '<f8'),
('0_157', '<f8'), ('0_158', '<f8'), ('0_159', '<f8'), ('0_160', '<f8'),
('0_161', '<f8'), ('0_162', '<f8'), ('0_163', '<f8'), ('0_164', '<f8'),
('0_165', '<f8'), ('0_166', '<f8'), ('0_167', '<f8'), ('0_168', '<f8'),
('0_169', '<f8'), ('0_170', '<f8'), ('0_171', '<f8'), ('0_172', '<f8'),
('0_173', '<f8'), ('0_174', '<f8'), ('0_175', '<f8'), ('0_176', '<f8'),
('0_177', '<f8'), ('0_178', '<f8'), ('0_179', '<f8'), ('0_180', '<f8'),
('0_181', '<f8'), ('0_182', '<f8'), ('0_183', '<f8'), ('0_184', '<i4'),
('0_185', '<i4'), ('0_186', '<i4'), ('0_187', '<i4'), ('0_188', '<i4'),
('0_189', '<i4'), ('0_190', '<i4'), ('0_191', '<i4'), ('0_192', '<i4'),
('0_193', '<i4'), ('0_194', '<i4'), ('0_195', '<i4'), ('0_196', '<i4'),
('0_197', '<i4'), ('0_198', '<i4'), ('0_199', '<i4'), ('0_200', '<i4')]
Traceback (most recent call last):
 File "d:/BoMdata/plotrainfall_v3.py", line 10, in <module>
 print "f dtype: ", f.dtype[1:2]
ValueError: Field key must be an integer, string, or unicode.
On Wed, Mar 21, 2012 at 1:47 AM, Benjamin Root <ben...@ou...> wrote:
>
>
> On Mon, Mar 19, 2012 at 5:28 PM, questions anon <que...@gm...>wrote:
>
>> So when I add "np.logical_or" to the beginning of the script it makes no
>> difference to the error message that I receive.
>>
>> I have tried reshaping the array but I receive an error message of:
>> Traceback (most recent call last):
>> File "<pyshell#0>", line 1, in <module>
>> f.reshape(691,886)
>> ValueError: total size of new array must be unchanged
>>
>> Is there a way to use np.genfromtxt and define the rows and columns on
>> import?
>>
>> Thanks
>>
>>
> I think you have two completely separate problems. They are completely
> unrelated to each other. The np.logical_or() issue happens within Basemap
> while your np.genfromtext() happens in your module. For the
> np.logical_or() issue, I suspect that there is something wrong with your
> installation (maybe EPD is conflicting with a pre-existing python
> install?). As for np.genfromtext(), I would put the code back to the way
> it was before (the original call looked right to me).
>
> Ben Root
>
>

Showing 5 results of 5

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /