You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
|
|
|
|
|
1
(5) |
2
(6) |
3
(4) |
4
(9) |
5
(7) |
6
(16) |
7
(5) |
8
(10) |
9
(2) |
10
(3) |
11
(9) |
12
(1) |
13
(13) |
14
(1) |
15
(13) |
16
(5) |
17
(3) |
18
(14) |
19
(17) |
20
(14) |
21
(15) |
22
(6) |
23
(6) |
24
|
25
(4) |
26
(4) |
27
(4) |
28
(11) |
29
(7) |
30
(1) |
Python Course in Golden, CO, USA ================================ Introduction to Python and Python for Scientists and Engineers -------------------------------------------------------------- June 3 - 4, 2011 Introduction to Python June 5, 2011 Python for Scientists and Engineers Both courses can be booked individually or together. Venue: Colorado School of Mines, Golden, CO (20 minutes west of Denver) Trainer: Mike Müller Target Audience --------------- The introductory course is designed for people with basic programming background. Since it is a general introduction to Python it is suitable for everybody interested in Python. The scientist's course assumes a working knowledge of Python. You will be fine if you take the two-day introduction before hand. The topics are of general interest for scientists and engineers. Even though some examples come from the groundwater modeling domain, they are easy to understand for people without prior knowledge in this field. About the Trainer ----------------- Mike Müller, has been teaching Python since 2004. He is the founder of Python Academy and regularly gives open and in-house Python courses as well as tutorials at PyCon US, OSCON, EuroSciPy and PyCon Asia-Pacific. More Information and Course Registration ---------------------------------------- http://igwmc.mines.edu/short-course/intro_python.html -- Mike mmu...@py...
I have checked with all the interpolation modes and the only one that behaves badly is 'nearest'. There are them: http://dl.dropbox.com/u/1351211/Interpolation_modes.zip On Mon, Apr 18, 2011 at 12:46 PM, Emanuele Passera <ema...@tr...> wrote: > Hello everybody, > > I am experiencing a strange behavior with the imshow() function when > using the nearest interpolation method. > > Executing the code listed below, I obtain a good image when using the > bilinear interpolation method > and a totally white image when using the nearest interpolation method. > I have attached the input data buffer and the resulting images too. > > > import numpy as n > import pylab as p > > # input data > dataFile = "/users/lelepass/python/test_imagesc/buffer.float" > samples = 15 > lines = 39 > imagescCanvasXDim = 800 > imagescCanvasDpi = 100 > data_aspect_ratio = 0.75707855955290304 > vMin = -3.3467740682968197 > vMax = 0.65322593170318011 > outImageFileBilinear = > "/users/lelepass/python/test_imagesc/subpxAzBilinear.png" > outImageFileNearest = > "/users/lelepass/python/test_imagesc/subpxAzNearest.png" > > # loading input data file > s = file(dataFile, 'rb').read() > data = n.fromstring(s, 'f') > data.shape = lines, samples > data = n.transpose(data) > > # image canvas dimension setting > xAxisInches = float(imagescCanvasXDim) / float(imagescCanvasDpi) > yPixelsDim = imagescCanvasXDim * data_aspect_ratio > yAxisInches = float(yPixelsDim) / float(imagescCanvasDpi) > > ################################ > # bilinear image # > ################################ > # image canvas > canvasObj = p.figure(facecolor="w", edgecolor="w", figsize=(xAxisInches, > yAxisInches), frameon=True, dpi=imagescCanvasDpi) > # axis setting > axisLocationList = [0,0,1,1] > axisObj = canvasObj.add_axes(axisLocationList) > axisObj.axesPatch.set_alpha(1) > # colormap > colorMap = p.cm.jet_r > # bilinear image drawing > p.imshow(data, cmap=colorMap, vmin=vMin, vmax=vMax, > interpolation="bilinear", origin="lower", aspect="auto", alpha=1) > reversing = axisObj.set_ylim(axisObj.get_ylim()[::-1]) > # bilinear image saving and closing > canvasObj.savefig(outImageFileBilinear, dpi=imagescCanvasDpi) > p.close() > > ################################ > # nearest image # > ################################ > # image canvas > canvasObj = p.figure(facecolor="w", edgecolor="w", figsize=(xAxisInches, > yAxisInches), frameon=True, dpi=imagescCanvasDpi) > # axis setting > axisLocationList = [0,0,1,1] > axisObj = canvasObj.add_axes(axisLocationList) > axisObj.axesPatch.set_alpha(1) > # colormap > colorMap = p.cm.jet_r > # nearest image drawing > p.imshow(data, cmap=colorMap, vmin=vMin, vmax=vMax, interpolation="nearest", > origin="lower", aspect="auto", alpha=1) > reversing = axisObj.set_ylim(axisObj.get_ylim()[::-1]) > # nearest image saving and closing > canvasObj.savefig(outImageFileNearest, dpi=imagescCanvasDpi) > p.close() > > > > I use matplotlib to generate a lot of images in batch mode and this > behavior appear not to be deterministic. It seems to depend on the input > data buffer. > Can anyone help me ? > > I use > Linux openSUSE 11.3 (x86_64) > Linux sat1 2.6.34.7-0.7-default #1 SMP 2010年12月13日 11:13:53 +0100 x86_64 > x86_64 x86_64 GNU/Linux > Python 2.6.5 > numpy 1.5.1 > matplotlib 1.0.1 with backend Agg v2.2 > > > If it can be of some help this strange behavior does not appear with a > system > Linux Ubuntu 9.10 > Linux joshua 2.6.28-11-server #42-Ubuntu SMP Fri Apr 17 02:48:10 UTC 2009 > i686 GNU/Linux > Python 2.6.4 > numpy 1.3.0 > matplotlib 0.99.0 with backend Agg v2.2 > > Executing the script with verbosity I get the subsequent output > python /users/lelepass/python/test_imagesc/test.py --verbose-helpful > > $HOME=/users/lelepass > CONFIGDIR=/users/lelepass/.matplotlib > > Bad key "numerix" on line 30 in > /users/lelepass/.matplotlib/matplotlibrc. > You probably need to get an updated matplotlibrc file from > http://matplotlib.sf.net/_static/matplotlibrc or from the matplotlib source > distribution > matplotlib data path /usr/lib64/python2.6/site-packages/matplotlib/mpl-data > loaded rc file /users/lelepass/.matplotlib/matplotlibrc > matplotlib version 1.0.1 > verbose.level helpful > interactive is False > units is True > platform is linux2 > Using fontManager instance from /users/lelepass/.matplotlib/fontList.cache > backend agg version v2.2 > findfont: Matching > :family=sans-serif:style=normal:variant=normal:weight=normal:stretch=normal:size=medium > to Bitstream Vera Sans > (/usr/lib64/python2.6/site-packages/matplotlib/mpl-data/fonts/ttf/Vera.ttf) > with score of 0.000000 > > > Thank you all. > Bye. > > > > > > Emanuele Passera > > Software Engineer > > Tele-Rilevamento Europa - T.R.E. srl > Via Vittoria Colonna, 7 > 20149 Milano – Italia > Tel.: +39.02.4343.121 - Fax: +39.02.4343.1230 > ema...@tr... - www.treuropa.com > > > -- > This communication, that may contain confidential and/or legally privileged > information, is intended solely for the use of the intended addressees. > Opinions, conclusions and other information contained in this message, that > do not relate to the official business of this firm, shall be considered as > not given or endorsed by it. Every opinion or advice contained in this > communication is subject to the terms and conditions provided by the > agreement governing the engagement with such a client. If you have received > this communication in error, please notify us immediately by responding to > this email and then delete it from your system. Any use, disclosure, copying > or distribution of the contents of this communication by a not-intended > recipient or in violation of the purposes of this communication is strictly > prohibited and may be unlawful. > -- > > ------------------------------------------------------------------------------ > Benefiting from Server Virtualization: Beyond Initial Workload > Consolidation -- Increasing the use of server virtualization is a top > priority.Virtualization can reduce costs, simplify management, and improve > application availability and disaster protection. Learn more about boosting > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > >
On 04/18/2011 06:07 AM, Muffles wrote: > > Ive seen lots of examples around, but i cant seem to adapt any to my > implementation. > The only thing i want is to change what values the colorbar shows. In the > colorbar there are values from 1 to 1e+9, and im only interested in the > values from 1e+4 to 1e+9... > > pc = ax.pcolor(pr[2].transpose(),norm=LogNorm(vmin=1),cmap=cm.jet) Have you tried using vmin=1e4 above? > > ax.set_yticks(np.arange(0-(arr_agl[0]*escala)/1000, > (arr_agl[600]*escala)/1000, escala)) > ax.set_yticklabels(range(20)) > > ax.set_ylim(0, 600) > ax.set_xlim(0,len(valores2)) > ax.xaxis.LABELPAD = 18 > > for label in ax.get_xticklabels() + ax.get_yticklabels(): > label.set_fontsize(16) > > plt.xlabel('Time of Measurement',fontsize=16) > plt.ylabel('HEIGHT above ground level, km',fontsize=16) > > colorbar = fig.colorbar(pc) With the suggested change to vmin, you might want to use the colorbar kwarg extend='min'. Eric > > Thx...
Do you have a minimal script that reproduces this error? Cheers, Mike On 04/18/2011 07:37 AM, Muffles wrote: > Hello all, > I am getting this error, and im not very experienced with matplotlib, but in > most files this code worked, but in some i just get this error: > > Traceback (most recent call last): > File "/home/paoli/public_html/netcdf2png.py", line 128, in<module> > colorbar = fig.colorbar(pc) > File "/usr/lib/python2.5/site-packages/matplotlib/figure.py", line 1022, > in colorbar > cb = cbar.Colorbar(cax, mappable, **kw) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 616, > in __init__ > ColorbarBase.__init__(self, ax, **kw) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 214, > in __init__ > self.draw_all() > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 225, > in draw_all > self._config_axes(X, Y) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 252, > in _config_axes > ticks, ticklabels, offset_string = self._ticker() > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 388, > in _ticker > b = np.array(locator()) > File "/usr/lib/python2.5/site-packages/matplotlib/ticker.py", line 1006, > in __call__ > vmax = math.log(vmax)/math.log(b) > OverflowError: math range error > Traceback (most recent call last): > File "/home/paoli/public_html/netcdf2png.py", line 128, in<module> > colorbar = fig.colorbar(pc) > File "/usr/lib/python2.5/site-packages/matplotlib/figure.py", line 1022, > in colorbar > cb = cbar.Colorbar(cax, mappable, **kw) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 616, > in __init__ > ColorbarBase.__init__(self, ax, **kw) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 214, > in __init__ > self.draw_all() > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 225, > in draw_all > self._config_axes(X, Y) > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 252, > in _config_axes > ticks, ticklabels, offset_string = self._ticker() > File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 388, > in _ticker > b = np.array(locator()) > File "/usr/lib/python2.5/site-packages/matplotlib/ticker.py", line 1006, > in __call__ > vmax = math.log(vmax)/math.log(b) > OverflowError: math range error > > > Is there any workaround? > Thx in advance!
Ive seen lots of examples around, but i cant seem to adapt any to my implementation. The only thing i want is to change what values the colorbar shows. In the colorbar there are values from 1 to 1e+9, and im only interested in the values from 1e+4 to 1e+9... pc = ax.pcolor(pr[2].transpose(),norm=LogNorm(vmin=1),cmap=cm.jet) ax.set_yticks(np.arange(0-(arr_agl[0]*escala)/1000, (arr_agl[600]*escala)/1000, escala)) ax.set_yticklabels(range(20)) ax.set_ylim(0, 600) ax.set_xlim(0,len(valores2)) ax.xaxis.LABELPAD = 18 for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) plt.xlabel('Time of Measurement',fontsize=16) plt.ylabel('HEIGHT above ground level, km',fontsize=16) colorbar = fig.colorbar(pc) Thx... -- View this message in context: http://old.nabble.com/Resize-the-colorbar-tp31425316p31425316.html Sent from the matplotlib - users mailing list archive at Nabble.com.
Hello, don't know the foo behind it, but using ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d %H:%M:%S')) works. Regards, Sebastian On Sun, 2011年04月17日 at 19:52 -0700, jfortiv wrote: > Hello, > > I'm trying to create a bar chart that looks something like a gannt chart... > > See the simple example here: > > http://www.promana.net/making-use-of-gantt-charts/ > > I'm trying to utilize barh() and fmt_xdata to accomplish this with the > following: > > #~~~~~~~~~~~~~~~~~~~~~~~ > > date1 = datetime.datetime( 2000, 3, 2) > date2 = datetime.datetime( 2000, 3, 6) > delta = datetime.timedelta(hours=6) > dates = mdates.drange(date1, date2, delta) > > val = mdates.drange(date1,date2,delta) # the bar lengths > pos = range(len(val)) # the bar centers on the y axis > height=0.5 # the bar height > left=mdates.drange(date1,date2,delta) # the bar starting position > > fig = plt.figure() > ax = fig.add_subplot(111) > ax.barh(pos,val,height=height,left=left,align='center',alpha=0.3) > ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') > > #~~~~~~~~~~~~~~~~~~~~~~~ > > > Even with ax.fmt_xdata, I'm simply getting numbers on the x-axis instead of > dates. Can anyone offer some pointers? > > Thanks, > James
Actually, I think he's wanting a set aspect, right? Either way, it's just "aspect=1.5" or "aspect=0.6667" depending on the orientation he wants. On Mon, Apr 18, 2011 at 6:37 AM, Sebastian Berg <seb...@si...>wrote: > The solution is already the aspect='auto', ie: > > import numpy as np > from matplotlib import pyplot as plt > a = np.arange(100).reshape(10,10) > plt.imshow(a, aspect='auto') > > aspect='auto' is what you were looking for, the documentation (as you > probably already found is for example at: > > http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.imshow > or in interactive help. > > > On Sun, 2011年04月17日 at 23:16 +0200, Paolo Zaffino wrote: > > Thanks for the reply. > > I checked in the help...I didn't understand what I must to use. > > Should you post me the link of the guide of this setting? > > Thanks! > > > > > > Il 16/04/2011 10:47, Sebastian Berg ha scritto: > > > Hello, > > > > > > check the help ;). you can set aspect='auto' or something fixed. > > > > > > Regards, > > > > > > Sebastian > > > > > > On Sat, 2011年04月16日 at 10:43 +0200, Paolo Zaffino wrote: > > >> Hi at all, > > >> I have a numpy matrix (an image) and I'd like to show it. > > >> I thought to use show function, but I have a question. > > >> I don't want that the pixel have dimension 1x1 unit but I want for > > >> example 1X1.5 unit (I don't want a square but a rectangle). > > >> How can I do this? > > >> Thanks in advance. > > >> Paolo > > >> > > >> > ------------------------------------------------------------------------------ > > >> Benefiting from Server Virtualization: Beyond Initial Workload > > >> Consolidation -- Increasing the use of server virtualization is a top > > >> priority.Virtualization can reduce costs, simplify management, and > improve > > >> application availability and disaster protection. Learn more about > boosting > > >> the value of server virtualization. > http://p.sf.net/sfu/vmware-sfdev2dev > > >> _______________________________________________ > > >> Matplotlib-users mailing list > > >> Mat...@li... > > >> https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > >> > > > > > > > > > > ------------------------------------------------------------------------------ > > > Benefiting from Server Virtualization: Beyond Initial Workload > > > Consolidation -- Increasing the use of server virtualization is a top > > > priority.Virtualization can reduce costs, simplify management, and > improve > > > application availability and disaster protection. Learn more about > boosting > > > the value of server virtualization. > http://p.sf.net/sfu/vmware-sfdev2dev > > > _______________________________________________ > > > Matplotlib-users mailing list > > > Mat...@li... > > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > > > > > > ------------------------------------------------------------------------------ > > Benefiting from Server Virtualization: Beyond Initial Workload > > Consolidation -- Increasing the use of server virtualization is a top > > priority.Virtualization can reduce costs, simplify management, and > improve > > application availability and disaster protection. Learn more about > boosting > > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > > _______________________________________________ > > Matplotlib-users mailing list > > Mat...@li... > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > > > ------------------------------------------------------------------------------ > Benefiting from Server Virtualization: Beyond Initial Workload > Consolidation -- Increasing the use of server virtualization is a top > priority.Virtualization can reduce costs, simplify management, and improve > application availability and disaster protection. Learn more about boosting > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >
The solution is already the aspect='auto', ie: import numpy as np from matplotlib import pyplot as plt a = np.arange(100).reshape(10,10) plt.imshow(a, aspect='auto') aspect='auto' is what you were looking for, the documentation (as you probably already found is for example at: http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.imshow or in interactive help. On Sun, 2011年04月17日 at 23:16 +0200, Paolo Zaffino wrote: > Thanks for the reply. > I checked in the help...I didn't understand what I must to use. > Should you post me the link of the guide of this setting? > Thanks! > > > Il 16/04/2011 10:47, Sebastian Berg ha scritto: > > Hello, > > > > check the help ;). you can set aspect='auto' or something fixed. > > > > Regards, > > > > Sebastian > > > > On Sat, 2011年04月16日 at 10:43 +0200, Paolo Zaffino wrote: > >> Hi at all, > >> I have a numpy matrix (an image) and I'd like to show it. > >> I thought to use show function, but I have a question. > >> I don't want that the pixel have dimension 1x1 unit but I want for > >> example 1X1.5 unit (I don't want a square but a rectangle). > >> How can I do this? > >> Thanks in advance. > >> Paolo > >> > >> ------------------------------------------------------------------------------ > >> Benefiting from Server Virtualization: Beyond Initial Workload > >> Consolidation -- Increasing the use of server virtualization is a top > >> priority.Virtualization can reduce costs, simplify management, and improve > >> application availability and disaster protection. Learn more about boosting > >> the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > >> _______________________________________________ > >> Matplotlib-users mailing list > >> Mat...@li... > >> https://lists.sourceforge.net/lists/listinfo/matplotlib-users > >> > > > > > > ------------------------------------------------------------------------------ > > Benefiting from Server Virtualization: Beyond Initial Workload > > Consolidation -- Increasing the use of server virtualization is a top > > priority.Virtualization can reduce costs, simplify management, and improve > > application availability and disaster protection. Learn more about boosting > > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > > _______________________________________________ > > Matplotlib-users mailing list > > Mat...@li... > > https://lists.sourceforge.net/lists/listinfo/matplotlib-users > > > > > ------------------------------------------------------------------------------ > Benefiting from Server Virtualization: Beyond Initial Workload > Consolidation -- Increasing the use of server virtualization is a top > priority.Virtualization can reduce costs, simplify management, and improve > application availability and disaster protection. Learn more about boosting > the value of server virtualization. http://p.sf.net/sfu/vmware-sfdev2dev > _______________________________________________ > Matplotlib-users mailing list > Mat...@li... > https://lists.sourceforge.net/lists/listinfo/matplotlib-users >
Hello all, I am getting this error, and im not very experienced with matplotlib, but in most files this code worked, but in some i just get this error: Traceback (most recent call last): File "/home/paoli/public_html/netcdf2png.py", line 128, in <module> colorbar = fig.colorbar(pc) File "/usr/lib/python2.5/site-packages/matplotlib/figure.py", line 1022, in colorbar cb = cbar.Colorbar(cax, mappable, **kw) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 616, in __init__ ColorbarBase.__init__(self, ax, **kw) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 214, in __init__ self.draw_all() File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 225, in draw_all self._config_axes(X, Y) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 252, in _config_axes ticks, ticklabels, offset_string = self._ticker() File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 388, in _ticker b = np.array(locator()) File "/usr/lib/python2.5/site-packages/matplotlib/ticker.py", line 1006, in __call__ vmax = math.log(vmax)/math.log(b) OverflowError: math range error Traceback (most recent call last): File "/home/paoli/public_html/netcdf2png.py", line 128, in <module> colorbar = fig.colorbar(pc) File "/usr/lib/python2.5/site-packages/matplotlib/figure.py", line 1022, in colorbar cb = cbar.Colorbar(cax, mappable, **kw) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 616, in __init__ ColorbarBase.__init__(self, ax, **kw) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 214, in __init__ self.draw_all() File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 225, in draw_all self._config_axes(X, Y) File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 252, in _config_axes ticks, ticklabels, offset_string = self._ticker() File "/usr/lib/python2.5/site-packages/matplotlib/colorbar.py", line 388, in _ticker b = np.array(locator()) File "/usr/lib/python2.5/site-packages/matplotlib/ticker.py", line 1006, in __call__ vmax = math.log(vmax)/math.log(b) OverflowError: math range error Is there any workaround? Thx in advance! -- View this message in context: http://old.nabble.com/OverflowError%3A-math-range-error-tp31423048p31423048.html Sent from the matplotlib - users mailing list archive at Nabble.com.
Hello all, i created some program to read from netcdf files and plot the data, and it seems to work ok. But when i try to run an older file, it just shows this: Traceback (most recent call last): File "netcdf2png.py", line 199, in <module> savefig("range.png") File "/usr/lib/pymodules/python2.6/matplotlib/pyplot.py", line 356, in savefig return fig.savefig(*args, **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/figure.py", line 1032, in savefig self.canvas.print_figure(*args, **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/backend_bases.py", line 1476, in print_figure **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_agg.py", line 358, in print_png FigureCanvasAgg.draw(self) File "/usr/lib/pymodules/python2.6/matplotlib/backends/backend_agg.py", line 314, in draw self.figure.draw(self.renderer) File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in draw_wrapper draw(artist, renderer, *args, **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/figure.py", line 773, in draw for a in self.axes: a.draw(renderer) File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in draw_wrapper draw(artist, renderer, *args, **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/axes.py", line 1735, in draw a.draw(renderer) File "/usr/lib/pymodules/python2.6/matplotlib/collections.py", line 704, in draw return Collection.draw(self, renderer) File "/usr/lib/pymodules/python2.6/matplotlib/artist.py", line 46, in draw_wrapper draw(artist, renderer, *args, **kwargs) File "/usr/lib/pymodules/python2.6/matplotlib/collections.py", line 201, in draw self.update_scalarmappable() File "/usr/lib/pymodules/python2.6/matplotlib/collections.py", line 477, in update_scalarmappable self._facecolors = self.to_rgba(self._A, self._alpha) File "/usr/lib/pymodules/python2.6/matplotlib/cm.py", line 166, in to_rgba x = self.norm(x) File "/usr/lib/pymodules/python2.6/matplotlib/colors.py", line 825, in __call__ raise ValueError("minvalue must be less than or equal to maxvalue") ValueError: minvalue must be less than or equal to maxvalue Any ideas? Thx in advance -- View this message in context: http://old.nabble.com/%22minvalue-must-be-less-than-or-equal-to-maxvalue%22-error-tp31422145p31422145.html Sent from the matplotlib - users mailing list archive at Nabble.com.
Hello, Suppose I create a matplotlib figure and plot things in it. In pylab it would be like: from pylab import * figure(1) plot([1,2,3],[1,2,3],'r*',label='label1') plot([1,2,3],[2,3,4],'r',label='label2') legend(loc='upper right') text(1.2,3,'nice figure') xlabel('xlabel') ylabel('ylabel') show() Now, after creating figure(1), I would like to make figure(2) that is completely identical to figure(1). is this possible? Does anyone know how? Thanks, Eli
Hi Eric, Thanks for the quick fix. I can confirm it works for me (on windows with PyQt4.7). The problem reported with TkAgg was possibly a mistake, as I am unable to reproduce it now... Please consider the issue solved. Re: Constrained zoom to x axis broken ? by efiring Apr 17, 2011; 11:14pm :: Rate this Message: - Use ratings to moderate (?) Reply | Print | View Threaded | Show Only this Message On 04/17/2011 07:59 AM, Eric Firing wrote: > On 04/16/2011 08:44 PM, butterw@... wrote: >> > > http://matplotlib.sourceforge.net/users/navigation_toolbar.html >> Constrained zoom to x axis (hold x key + left click zoom icon) is broken >> for me with master. >> Tested with TkAgg, Qt4Agg backend >> features was working on mpl 1.0.0 > It works for me with gtk and Tk, but not with qt4. > Eric ... [show rest of quote] https://github.com/matplotlib/matplotlib/pull/86 Above is a fix for qt4. Eric ------------------------------------------------------------------------------
Hello, I'm trying to create a bar chart that looks something like a gannt chart... See the simple example here: http://www.promana.net/making-use-of-gantt-charts/ I'm trying to utilize barh() and fmt_xdata to accomplish this with the following: #~~~~~~~~~~~~~~~~~~~~~~~ date1 = datetime.datetime( 2000, 3, 2) date2 = datetime.datetime( 2000, 3, 6) delta = datetime.timedelta(hours=6) dates = mdates.drange(date1, date2, delta) val = mdates.drange(date1,date2,delta) # the bar lengths pos = range(len(val)) # the bar centers on the y axis height=0.5 # the bar height left=mdates.drange(date1,date2,delta) # the bar starting position fig = plt.figure() ax = fig.add_subplot(111) ax.barh(pos,val,height=height,left=left,align='center',alpha=0.3) ax.fmt_xdata = mdates.DateFormatter('%Y-%m-%d %H:%M:%S') #~~~~~~~~~~~~~~~~~~~~~~~ Even with ax.fmt_xdata, I'm simply getting numbers on the x-axis instead of dates. Can anyone offer some pointers? Thanks, James -- View this message in context: http://old.nabble.com/Date-format-the-x-axis-of-a-barh%28%29-plot--tp31420395p31420395.html Sent from the matplotlib - users mailing list archive at Nabble.com.