SourceForge logo
SourceForge logo
Menu

matplotlib-users — Discussion related to using matplotlib

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
(3)
Jun
Jul
Aug
(12)
Sep
(12)
Oct
(56)
Nov
(65)
Dec
(37)
2004 Jan
(59)
Feb
(78)
Mar
(153)
Apr
(205)
May
(184)
Jun
(123)
Jul
(171)
Aug
(156)
Sep
(190)
Oct
(120)
Nov
(154)
Dec
(223)
2005 Jan
(184)
Feb
(267)
Mar
(214)
Apr
(286)
May
(320)
Jun
(299)
Jul
(348)
Aug
(283)
Sep
(355)
Oct
(293)
Nov
(232)
Dec
(203)
2006 Jan
(352)
Feb
(358)
Mar
(403)
Apr
(313)
May
(165)
Jun
(281)
Jul
(316)
Aug
(228)
Sep
(279)
Oct
(243)
Nov
(315)
Dec
(345)
2007 Jan
(260)
Feb
(323)
Mar
(340)
Apr
(319)
May
(290)
Jun
(296)
Jul
(221)
Aug
(292)
Sep
(242)
Oct
(248)
Nov
(242)
Dec
(332)
2008 Jan
(312)
Feb
(359)
Mar
(454)
Apr
(287)
May
(340)
Jun
(450)
Jul
(403)
Aug
(324)
Sep
(349)
Oct
(385)
Nov
(363)
Dec
(437)
2009 Jan
(500)
Feb
(301)
Mar
(409)
Apr
(486)
May
(545)
Jun
(391)
Jul
(518)
Aug
(497)
Sep
(492)
Oct
(429)
Nov
(357)
Dec
(310)
2010 Jan
(371)
Feb
(657)
Mar
(519)
Apr
(432)
May
(312)
Jun
(416)
Jul
(477)
Aug
(386)
Sep
(419)
Oct
(435)
Nov
(320)
Dec
(202)
2011 Jan
(321)
Feb
(413)
Mar
(299)
Apr
(215)
May
(284)
Jun
(203)
Jul
(207)
Aug
(314)
Sep
(321)
Oct
(259)
Nov
(347)
Dec
(209)
2012 Jan
(322)
Feb
(414)
Mar
(377)
Apr
(179)
May
(173)
Jun
(234)
Jul
(295)
Aug
(239)
Sep
(276)
Oct
(355)
Nov
(144)
Dec
(108)
2013 Jan
(170)
Feb
(89)
Mar
(204)
Apr
(133)
May
(142)
Jun
(89)
Jul
(160)
Aug
(180)
Sep
(69)
Oct
(136)
Nov
(83)
Dec
(32)
2014 Jan
(71)
Feb
(90)
Mar
(161)
Apr
(117)
May
(78)
Jun
(94)
Jul
(60)
Aug
(83)
Sep
(102)
Oct
(132)
Nov
(154)
Dec
(96)
2015 Jan
(45)
Feb
(138)
Mar
(176)
Apr
(132)
May
(119)
Jun
(124)
Jul
(77)
Aug
(31)
Sep
(34)
Oct
(22)
Nov
(23)
Dec
(9)
2016 Jan
(26)
Feb
(17)
Mar
(10)
Apr
(8)
May
(4)
Jun
(8)
Jul
(6)
Aug
(5)
Sep
(9)
Oct
(4)
Nov
Dec
2017 Jan
(5)
Feb
(7)
Mar
(1)
Apr
(5)
May
Jun
(3)
Jul
(6)
Aug
(1)
Sep
Oct
(2)
Nov
(1)
Dec
2018 Jan
Feb
Mar
Apr
(1)
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2020 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
2025 Jan
(1)
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S
1
(1)
2
3
4
5
(10)
6
7
(3)
8
(5)
9
10
(3)
11
(1)
12
(16)
13
(1)
14
15
(5)
16
(5)
17
(4)
18
(2)
19
(9)
20
(4)
21
(2)
22
23
(1)
24
25
(4)
26
(6)
27
(9)
28
(1)
29
(2)
30





Showing 1 results of 1

From: dydy2014 <dya...@gm...> - 2014年06月01日 09:40:28
Dear all,
It is still the same problem. Actually my code like below :
import os
import netCDF4 as nc
import numpy as np
import matplotlib.pylab as pl
base_dir = 'C:/DATA2011/' # Note PC
nc_file1 = '20110301.faifb1p16m2.nc' # Single beam data
nc_file2 = '20110301.faifb1p16m3.nc' # Single beam data
nc_file3 = '20110301.faifb1p16m4.nc' # Single beam data
# Change directory
os.chdir(base_dir)
# Open netCDF file
fd1 = nc.Dataset(nc_file1, 'r')
fd2 = nc.Dataset(nc_file2, 'r')
fd3 = nc.Dataset(nc_file3, 'r')
# Read variables from the netCDF file
date1 = fd1.variables['date'][:]
beam1 = fd1.variables['beam'][:]
az1 = fd1.variables['az'][:]
ze1 = fd1.variables['ze'][:]
rng1 = fd1.variables['range'][:]
tim1 = fd1.variables['time'][:]
pwr1 = fd1.variables['pwr'][:]
dpl1 = fd1.variables['dpl'][:]
nfft1 = fd1.variables['nfft'][0]
pn1 = fd1.variables['pnoise'][:]
# Read variables from the netCDF file
date2 = fd2.variables['date'][:]
beam2 = fd2.variables['beam'][:]
az2 = fd2.variables['az'][:]
ze2 = fd2.variables['ze'][:]
rng2 = fd2.variables['range'][:]
tim2 = fd2.variables['time'][:]
pwr2 = fd2.variables['pwr'][:]
dpl2 = fd2.variables['dpl'][:]
nfft2 = fd2.variables['nfft'][0]
pn2 = fd2.variables['pnoise'][:]
# Read variables from the netCDF file
date3 = fd3.variables['date'][:]
beam3 = fd3.variables['beam'][:]
az3 = fd3.variables['az'][:]
ze3 = fd3.variables['ze'][:]
rng3 = fd3.variables['range'][:]
tim3 = fd3.variables['time'][:]
pwr3 = fd3.variables['pwr'][:]
dpl3 = fd3.variables['dpl'][:]
nfft3 = fd3.variables['nfft'][0]
pn3 = fd3.variables['pnoise'][:]
# Close netCDF file
fd1.close()
fd2.close()
fd3.close()
# Speify which beam to show
ibeam1 = 0
ibeam2 = 0
ibeam3 = 0
# Time convertion from seconds to hours
tim1 = tim1/3600.0
tim2 = tim2/3600.0
tim3 = tim3/3600.0
# Select data of the specified beam, and transpose
p_plot1 = pwr1[ibeam1]
for it1 in range(len(tim1)):
 p_plot1[it1] = p_plot1[it1] - pn1[ibeam1][it1] - 10.*np.log10(nfft1)
p_plot1 = p_plot1.transpose() 
# Select data of the specified beam, and transpose
p_plot2 = pwr2[ibeam2]
for it2 in range(len(tim2)):
 p_plot2[it2] = p_plot2[it2] - pn2[ibeam2][it2] - 10.*np.log10(nfft2)
p_plot2 = p_plot2.transpose() 
# Select data of the specified beam, and transpose
p_plot3 = pwr3[ibeam3]
for it3 in range(len(tim3)):
 p_plot3[it3] = p_plot3[it3] - pn3[ibeam3][it3] - 10.*np.log10(nfft3)
p_plot3 = p_plot3.transpose() 
# Count max SNR (single beam)
pthres1 = 2.0
N_total1 = 0
N_signal1 = 0
for j in range(len(tim1)):
 if 18.0 <= tim1[j] <= 30.0:
 for i in range(len(rng1)):
 N_total1 = N_total1 + 1
 if 200.0 <= rng1[i] <= 550 :
 if p_plot1[i][j] > pthres1:
 ipthres1 = i
 jpthres1 = j
 N_signal1 = N_signal1 + 1
 
# Count max SNR (single beam)
pthres2 = 2.0
N_total2 = 0
N_signal2 = 0
for j in range(len(tim2)):
 if 18.0 <= tim2[j] <= 30.0:
 for i in range(len(rng2)):
 N_total2 = N_total2 + 1
 if 200.0 <= rng2[i] <= 550 :
 if p_plot2[i][j] > pthres2:
 ipthres2 = i
 jpthres2 = j
 N_signal2 = N_signal2 + 1
 
# Count max SNR (single beam)
pthres3 = 2.0
N_total3 = 0
N_signal3 = 0
for j in range(len(tim3)):
 if 18.0 <= tim3[j] <= 30.0:
 for i in range(len(rng3)):
 N_total3 = N_total3 + 1
 if 200.0 <= rng3[i] <= 550 :
 if p_plot3[i][j] > pthres3:
 ipthres3 = i
 jpthres3 = j
 N_signal3 = N_signal3 + 1
 
fig = pl.figure()
#Plot contour
axs1=fig.add_subplot(3,1,1)
v1 = np.linspace(0., 50., 10., endpoint=True)
axs1=pl.contourf(tim1, rng1, p_plot1, v1, cmap1=pl.cm.jet)
x1 = pl.colorbar(ticks=v1)
print x1
# Set X and Y axis lower/upper limit
set_xy1 = range(4)
set_xy1[0] = 18.0 # x min
set_xy1[1] = 30.0 # x max
set_xy1[2] = 200.0 # y min
set_xy1[3] = 550.0 # y max
pl.axis(set_xy1)
axs2=fig.add_subplot(3,1,2)
v2 = np.linspace(0., 50., 10., endpoint=True)
axs2=pl.contourf(tim2, rng2, p_plot2, v2, cmap2=pl.cm.jet)
x2 = pl.colorbar(ticks=v2)
print x2
# Set X and Y axis lower/upper limit
set_xy2 = range(4)
set_xy2[0] = 18.0 # x min
set_xy2[1] = 30.0 # x max
set_xy2[2] = 200.0 # y min
set_xy2[3] = 550.0 # y max
pl.axis(set_xy2)
axs3=fig.add_subplot(3,1,3)
v3 = np.linspace(0., 50., 10., endpoint=True)
axs3=pl.contourf(tim3, rng3, p_plot3, v3, cmap3=pl.cm.jet)
x3 = pl.colorbar(ticks=v3)
print x3
# Set X and Y axis lower/upper limit
set_xy3 = range(4)
set_xy3[0] = 18.0 # x min
set_xy3[1] = 30.0 # x max
set_xy3[2] = 200.0 # y min
set_xy3[3] = 550.0 # y max
pl.axis(set_xy3)
pl.show()
# Set X and Y axis lower/upper limit
set_xy1 = range(4)
set_xy1[0] = 18.0 # x min
set_xy1[1] = 30.0 # x max
set_xy1[2] = 200.0 # y min
set_xy1[3] = 550.0 # y max
pl.axis(set_xy1)
Could somebody help me to make the code shorter by using loop and the image
only show one colorbar for three image?.
Recent result :
<http://matplotlib.1069221.n5.nabble.com/file/n43464/figure_1.png> 
--
View this message in context: http://matplotlib.1069221.n5.nabble.com/One-colorbar-for-many-plot-tp43430p43464.html
Sent from the matplotlib - users mailing list archive at Nabble.com.

Showing 1 results of 1

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /