You can subscribe to this list here.
2003 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(3) |
Jun
|
Jul
|
Aug
(12) |
Sep
(12) |
Oct
(56) |
Nov
(65) |
Dec
(37) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2004 |
Jan
(59) |
Feb
(78) |
Mar
(153) |
Apr
(205) |
May
(184) |
Jun
(123) |
Jul
(171) |
Aug
(156) |
Sep
(190) |
Oct
(120) |
Nov
(154) |
Dec
(223) |
2005 |
Jan
(184) |
Feb
(267) |
Mar
(214) |
Apr
(286) |
May
(320) |
Jun
(299) |
Jul
(348) |
Aug
(283) |
Sep
(355) |
Oct
(293) |
Nov
(232) |
Dec
(203) |
2006 |
Jan
(352) |
Feb
(358) |
Mar
(403) |
Apr
(313) |
May
(165) |
Jun
(281) |
Jul
(316) |
Aug
(228) |
Sep
(279) |
Oct
(243) |
Nov
(315) |
Dec
(345) |
2007 |
Jan
(260) |
Feb
(323) |
Mar
(340) |
Apr
(319) |
May
(290) |
Jun
(296) |
Jul
(221) |
Aug
(292) |
Sep
(242) |
Oct
(248) |
Nov
(242) |
Dec
(332) |
2008 |
Jan
(312) |
Feb
(359) |
Mar
(454) |
Apr
(287) |
May
(340) |
Jun
(450) |
Jul
(403) |
Aug
(324) |
Sep
(349) |
Oct
(385) |
Nov
(363) |
Dec
(437) |
2009 |
Jan
(500) |
Feb
(301) |
Mar
(409) |
Apr
(486) |
May
(545) |
Jun
(391) |
Jul
(518) |
Aug
(497) |
Sep
(492) |
Oct
(429) |
Nov
(357) |
Dec
(310) |
2010 |
Jan
(371) |
Feb
(657) |
Mar
(519) |
Apr
(432) |
May
(312) |
Jun
(416) |
Jul
(477) |
Aug
(386) |
Sep
(419) |
Oct
(435) |
Nov
(320) |
Dec
(202) |
2011 |
Jan
(321) |
Feb
(413) |
Mar
(299) |
Apr
(215) |
May
(284) |
Jun
(203) |
Jul
(207) |
Aug
(314) |
Sep
(321) |
Oct
(259) |
Nov
(347) |
Dec
(209) |
2012 |
Jan
(322) |
Feb
(414) |
Mar
(377) |
Apr
(179) |
May
(173) |
Jun
(234) |
Jul
(295) |
Aug
(239) |
Sep
(276) |
Oct
(355) |
Nov
(144) |
Dec
(108) |
2013 |
Jan
(170) |
Feb
(89) |
Mar
(204) |
Apr
(133) |
May
(142) |
Jun
(89) |
Jul
(160) |
Aug
(180) |
Sep
(69) |
Oct
(136) |
Nov
(83) |
Dec
(32) |
2014 |
Jan
(71) |
Feb
(90) |
Mar
(161) |
Apr
(117) |
May
(78) |
Jun
(94) |
Jul
(60) |
Aug
(83) |
Sep
(102) |
Oct
(132) |
Nov
(154) |
Dec
(96) |
2015 |
Jan
(45) |
Feb
(138) |
Mar
(176) |
Apr
(132) |
May
(119) |
Jun
(124) |
Jul
(77) |
Aug
(31) |
Sep
(34) |
Oct
(22) |
Nov
(23) |
Dec
(9) |
2016 |
Jan
(26) |
Feb
(17) |
Mar
(10) |
Apr
(8) |
May
(4) |
Jun
(8) |
Jul
(6) |
Aug
(5) |
Sep
(9) |
Oct
(4) |
Nov
|
Dec
|
2017 |
Jan
(5) |
Feb
(7) |
Mar
(1) |
Apr
(5) |
May
|
Jun
(3) |
Jul
(6) |
Aug
(1) |
Sep
|
Oct
(2) |
Nov
(1) |
Dec
|
2018 |
Jan
|
Feb
|
Mar
|
Apr
(1) |
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2020 |
Jan
|
Feb
|
Mar
|
Apr
|
May
(1) |
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
2025 |
Jan
(1) |
Feb
|
Mar
|
Apr
|
May
|
Jun
|
Jul
|
Aug
|
Sep
|
Oct
|
Nov
|
Dec
|
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1
(1) |
2
|
3
|
4
|
5
(10) |
6
|
7
(3) |
8
(5) |
9
|
10
(3) |
11
(1) |
12
(16) |
13
(1) |
14
|
15
(5) |
16
(5) |
17
(4) |
18
(2) |
19
(9) |
20
(4) |
21
(2) |
22
|
23
(1) |
24
|
25
(4) |
26
(6) |
27
(9) |
28
(1) |
29
(2) |
30
|
|
|
|
|
|
Dear all, It is still the same problem. Actually my code like below : import os import netCDF4 as nc import numpy as np import matplotlib.pylab as pl base_dir = 'C:/DATA2011/' # Note PC nc_file1 = '20110301.faifb1p16m2.nc' # Single beam data nc_file2 = '20110301.faifb1p16m3.nc' # Single beam data nc_file3 = '20110301.faifb1p16m4.nc' # Single beam data # Change directory os.chdir(base_dir) # Open netCDF file fd1 = nc.Dataset(nc_file1, 'r') fd2 = nc.Dataset(nc_file2, 'r') fd3 = nc.Dataset(nc_file3, 'r') # Read variables from the netCDF file date1 = fd1.variables['date'][:] beam1 = fd1.variables['beam'][:] az1 = fd1.variables['az'][:] ze1 = fd1.variables['ze'][:] rng1 = fd1.variables['range'][:] tim1 = fd1.variables['time'][:] pwr1 = fd1.variables['pwr'][:] dpl1 = fd1.variables['dpl'][:] nfft1 = fd1.variables['nfft'][0] pn1 = fd1.variables['pnoise'][:] # Read variables from the netCDF file date2 = fd2.variables['date'][:] beam2 = fd2.variables['beam'][:] az2 = fd2.variables['az'][:] ze2 = fd2.variables['ze'][:] rng2 = fd2.variables['range'][:] tim2 = fd2.variables['time'][:] pwr2 = fd2.variables['pwr'][:] dpl2 = fd2.variables['dpl'][:] nfft2 = fd2.variables['nfft'][0] pn2 = fd2.variables['pnoise'][:] # Read variables from the netCDF file date3 = fd3.variables['date'][:] beam3 = fd3.variables['beam'][:] az3 = fd3.variables['az'][:] ze3 = fd3.variables['ze'][:] rng3 = fd3.variables['range'][:] tim3 = fd3.variables['time'][:] pwr3 = fd3.variables['pwr'][:] dpl3 = fd3.variables['dpl'][:] nfft3 = fd3.variables['nfft'][0] pn3 = fd3.variables['pnoise'][:] # Close netCDF file fd1.close() fd2.close() fd3.close() # Speify which beam to show ibeam1 = 0 ibeam2 = 0 ibeam3 = 0 # Time convertion from seconds to hours tim1 = tim1/3600.0 tim2 = tim2/3600.0 tim3 = tim3/3600.0 # Select data of the specified beam, and transpose p_plot1 = pwr1[ibeam1] for it1 in range(len(tim1)): p_plot1[it1] = p_plot1[it1] - pn1[ibeam1][it1] - 10.*np.log10(nfft1) p_plot1 = p_plot1.transpose() # Select data of the specified beam, and transpose p_plot2 = pwr2[ibeam2] for it2 in range(len(tim2)): p_plot2[it2] = p_plot2[it2] - pn2[ibeam2][it2] - 10.*np.log10(nfft2) p_plot2 = p_plot2.transpose() # Select data of the specified beam, and transpose p_plot3 = pwr3[ibeam3] for it3 in range(len(tim3)): p_plot3[it3] = p_plot3[it3] - pn3[ibeam3][it3] - 10.*np.log10(nfft3) p_plot3 = p_plot3.transpose() # Count max SNR (single beam) pthres1 = 2.0 N_total1 = 0 N_signal1 = 0 for j in range(len(tim1)): if 18.0 <= tim1[j] <= 30.0: for i in range(len(rng1)): N_total1 = N_total1 + 1 if 200.0 <= rng1[i] <= 550 : if p_plot1[i][j] > pthres1: ipthres1 = i jpthres1 = j N_signal1 = N_signal1 + 1 # Count max SNR (single beam) pthres2 = 2.0 N_total2 = 0 N_signal2 = 0 for j in range(len(tim2)): if 18.0 <= tim2[j] <= 30.0: for i in range(len(rng2)): N_total2 = N_total2 + 1 if 200.0 <= rng2[i] <= 550 : if p_plot2[i][j] > pthres2: ipthres2 = i jpthres2 = j N_signal2 = N_signal2 + 1 # Count max SNR (single beam) pthres3 = 2.0 N_total3 = 0 N_signal3 = 0 for j in range(len(tim3)): if 18.0 <= tim3[j] <= 30.0: for i in range(len(rng3)): N_total3 = N_total3 + 1 if 200.0 <= rng3[i] <= 550 : if p_plot3[i][j] > pthres3: ipthres3 = i jpthres3 = j N_signal3 = N_signal3 + 1 fig = pl.figure() #Plot contour axs1=fig.add_subplot(3,1,1) v1 = np.linspace(0., 50., 10., endpoint=True) axs1=pl.contourf(tim1, rng1, p_plot1, v1, cmap1=pl.cm.jet) x1 = pl.colorbar(ticks=v1) print x1 # Set X and Y axis lower/upper limit set_xy1 = range(4) set_xy1[0] = 18.0 # x min set_xy1[1] = 30.0 # x max set_xy1[2] = 200.0 # y min set_xy1[3] = 550.0 # y max pl.axis(set_xy1) axs2=fig.add_subplot(3,1,2) v2 = np.linspace(0., 50., 10., endpoint=True) axs2=pl.contourf(tim2, rng2, p_plot2, v2, cmap2=pl.cm.jet) x2 = pl.colorbar(ticks=v2) print x2 # Set X and Y axis lower/upper limit set_xy2 = range(4) set_xy2[0] = 18.0 # x min set_xy2[1] = 30.0 # x max set_xy2[2] = 200.0 # y min set_xy2[3] = 550.0 # y max pl.axis(set_xy2) axs3=fig.add_subplot(3,1,3) v3 = np.linspace(0., 50., 10., endpoint=True) axs3=pl.contourf(tim3, rng3, p_plot3, v3, cmap3=pl.cm.jet) x3 = pl.colorbar(ticks=v3) print x3 # Set X and Y axis lower/upper limit set_xy3 = range(4) set_xy3[0] = 18.0 # x min set_xy3[1] = 30.0 # x max set_xy3[2] = 200.0 # y min set_xy3[3] = 550.0 # y max pl.axis(set_xy3) pl.show() # Set X and Y axis lower/upper limit set_xy1 = range(4) set_xy1[0] = 18.0 # x min set_xy1[1] = 30.0 # x max set_xy1[2] = 200.0 # y min set_xy1[3] = 550.0 # y max pl.axis(set_xy1) Could somebody help me to make the code shorter by using loop and the image only show one colorbar for three image?. Recent result : <http://matplotlib.1069221.n5.nabble.com/file/n43464/figure_1.png> -- View this message in context: http://matplotlib.1069221.n5.nabble.com/One-colorbar-for-many-plot-tp43430p43464.html Sent from the matplotlib - users mailing list archive at Nabble.com.