SourceForge logo
SourceForge logo
Menu

matplotlib-devel — matplotlib developers

You can subscribe to this list here.

2003 Jan
Feb
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
(1)
Nov
(33)
Dec
(20)
2004 Jan
(7)
Feb
(44)
Mar
(51)
Apr
(43)
May
(43)
Jun
(36)
Jul
(61)
Aug
(44)
Sep
(25)
Oct
(82)
Nov
(97)
Dec
(47)
2005 Jan
(77)
Feb
(143)
Mar
(42)
Apr
(31)
May
(93)
Jun
(93)
Jul
(35)
Aug
(78)
Sep
(56)
Oct
(44)
Nov
(72)
Dec
(75)
2006 Jan
(116)
Feb
(99)
Mar
(181)
Apr
(171)
May
(112)
Jun
(86)
Jul
(91)
Aug
(111)
Sep
(77)
Oct
(72)
Nov
(57)
Dec
(51)
2007 Jan
(64)
Feb
(116)
Mar
(70)
Apr
(74)
May
(53)
Jun
(40)
Jul
(519)
Aug
(151)
Sep
(132)
Oct
(74)
Nov
(282)
Dec
(190)
2008 Jan
(141)
Feb
(67)
Mar
(69)
Apr
(96)
May
(227)
Jun
(404)
Jul
(399)
Aug
(96)
Sep
(120)
Oct
(205)
Nov
(126)
Dec
(261)
2009 Jan
(136)
Feb
(136)
Mar
(119)
Apr
(124)
May
(155)
Jun
(98)
Jul
(136)
Aug
(292)
Sep
(174)
Oct
(126)
Nov
(126)
Dec
(79)
2010 Jan
(109)
Feb
(83)
Mar
(139)
Apr
(91)
May
(79)
Jun
(164)
Jul
(184)
Aug
(146)
Sep
(163)
Oct
(128)
Nov
(70)
Dec
(73)
2011 Jan
(235)
Feb
(165)
Mar
(147)
Apr
(86)
May
(74)
Jun
(118)
Jul
(65)
Aug
(75)
Sep
(162)
Oct
(94)
Nov
(48)
Dec
(44)
2012 Jan
(49)
Feb
(40)
Mar
(88)
Apr
(35)
May
(52)
Jun
(69)
Jul
(90)
Aug
(123)
Sep
(112)
Oct
(120)
Nov
(105)
Dec
(116)
2013 Jan
(76)
Feb
(26)
Mar
(78)
Apr
(43)
May
(61)
Jun
(53)
Jul
(147)
Aug
(85)
Sep
(83)
Oct
(122)
Nov
(18)
Dec
(27)
2014 Jan
(58)
Feb
(25)
Mar
(49)
Apr
(17)
May
(29)
Jun
(39)
Jul
(53)
Aug
(52)
Sep
(35)
Oct
(47)
Nov
(110)
Dec
(27)
2015 Jan
(50)
Feb
(93)
Mar
(96)
Apr
(30)
May
(55)
Jun
(83)
Jul
(44)
Aug
(8)
Sep
(5)
Oct
Nov
(1)
Dec
(1)
2016 Jan
Feb
Mar
(1)
Apr
May
Jun
(2)
Jul
Aug
(3)
Sep
(1)
Oct
(3)
Nov
Dec
2017 Jan
Feb
(5)
Mar
Apr
May
Jun
Jul
(3)
Aug
Sep
(7)
Oct
Nov
Dec
2018 Jan
Feb
Mar
Apr
May
Jun
Jul
(2)
Aug
Sep
Oct
Nov
Dec
S M T W T F S



1
(3)
2
(4)
3
4
(2)
5
6
(4)
7
(11)
8
(7)
9
(9)
10
(3)
11
12
13
(4)
14
(1)
15
(24)
16
(8)
17
(11)
18
(6)
19
(2)
20
(14)
21
(13)
22
(14)
23
(3)
24
(6)
25
(2)
26
27
(9)
28
(18)
29
(7)
30
(15)
31
(5)

Showing 4 results of 4

From: Charlie M. <cw...@gm...> - 2008年10月06日 17:20:31
Hey Randy,
 All the mpl binaries are built against tcl/tk 8.4. I believe mpl is
not compatible with tcl/tk 8.5 as of the last release. Someone else might
know if this has changed in svn?
- Charlie
On Sun, Oct 5, 2008 at 11:04 PM, Randy Heiland <he...@in...> wrote:
> Short/naive question: do the mpl eggs have a dependency on Tk 8.4?
>
> Longer question: I'm trying to support a plugin (NLOPredict) to a
> popular molecular vis pkg (UCSF Chimera) and, no surprise, the plugin
> uses mpl. Chimera bundles its own Python, plus all dependencies.
> The latest version switched to Python 2.5 and Tcl/Tk 8.5. It also
> bundles numpy 1.0.4. So I tried to install a mpl-maintenance egg
> (Windows first) that used Python 2.5 and pre-numpy 1.1 (I tried mpl
> 0.91.4 and 91.2). However, when I bring up the Chimera IDLE, I get:
>
> >>> from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
> traceback...
> File "d:\chimera-1.2540\bin\lib\site-package\matplotlib-0.91.2-py2.5-
> win32.egg\matplotlib\backends\backend_tkagg.py", line 8, in <module>
> import tkagg # Paint image to Tk photo blitter extension
> File "d:\chimera-1.2540\bin\lib\site-package\matplotlib-0.91.2-
> py2.5-win32.egg\matplotlib\backends\tkagg.py", line 1, in <module>
> import _tkagg
> ImportError: DLL load failed: The specified file could not be found.
>
>
> Ideas?
> thanks, Randy
>
> -------------------------------------------------------------------------
> This SF.Net email is sponsored by the Moblin Your Move Developer's
> challenge
> Build the coolest Linux based applications with Moblin SDK & win great
> prizes
> Grand prize is a trip for two to an Open Source event anywhere in the world
> http://moblin-contest.org/redirect.php?banner_id=100&url=/
> _______________________________________________
> Matplotlib-devel mailing list
> Mat...@li...
> https://lists.sourceforge.net/lists/listinfo/matplotlib-devel
>
From: Gregor T. <gre...@gm...> - 2008年10月06日 15:25:31
Dear developers,
in matplotlib 0.98.3 I discoverd that in scatter individual alpha 
settings (by giving a list of rgba values) are ignered. Here an example 
that show this behaviour: All points show the same alpha value as given 
by the alpha keyword argument. (Omitting it equals to the setting alpha=1).
from pylab import *
x = [1,2,3]
y = [1,2,3]
c = [[1,0,0, 0.0],
 [1,0,0, 0.5],
 [1,0,0, 1.0]]
gca()
cla()
scatter(x,y, c=c, s = 200, alpha = 0.5)
draw()
show()
I had a look at the sources. In axes.py/scatter I simply removed the line
collection.set_alpha(alpha)
The recent svn version also contains this line.
With this change it worked as expected, also e.g. for the case of a 
single color for all points,
scatter(x,y, c = 'r', alpha = 0.5)
Gregor
From: Randy H. <he...@in...> - 2008年10月06日 03:05:40
Short/naive question: do the mpl eggs have a dependency on Tk 8.4?
Longer question: I'm trying to support a plugin (NLOPredict) to a 
popular molecular vis pkg (UCSF Chimera) and, no surprise, the plugin 
uses mpl. Chimera bundles its own Python, plus all dependencies. 
The latest version switched to Python 2.5 and Tcl/Tk 8.5. It also 
bundles numpy 1.0.4. So I tried to install a mpl-maintenance egg 
(Windows first) that used Python 2.5 and pre-numpy 1.1 (I tried mpl 
0.91.4 and 91.2). However, when I bring up the Chimera IDLE, I get:
 >>> from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
traceback...
File "d:\chimera-1.2540\bin\lib\site-package\matplotlib-0.91.2-py2.5- 
win32.egg\matplotlib\backends\backend_tkagg.py", line 8, in <module>
 import tkagg # Paint image to Tk photo blitter extension
 File "d:\chimera-1.2540\bin\lib\site-package\matplotlib-0.91.2- 
py2.5-win32.egg\matplotlib\backends\tkagg.py", line 1, in <module>
 import _tkagg
ImportError: DLL load failed: The specified file could not be found.
Ideas?
thanks, Randy
From: Eric F. <ef...@ha...> - 2008年10月06日 00:50:58
I am getting very inconsistent timings when looking into plotting a line 
with a very large number of points. Axes.add_line() is very slow, and 
the time is taken by Axes._update_line_limits(). But when I simply run 
the latter, on a Line2D of the same dimensions, it can be fast.
import matplotlib
matplotlib.use('template')
import numpy as np
import matplotlib.lines as mlines
import matplotlib.pyplot as plt
ax = plt.gca()
LL = mlines.Line2D(np.arange(1.5e6), np.sin(np.arange(1.5e6)))
from time import time
t = time(); ax.add_line(LL); time()-t
###16.621543884277344
LL = mlines.Line2D(np.arange(1.5e6), np.sin(np.arange(1.5e6)))
t = time(); ax.add_line(LL); time()-t
###16.579419136047363
## We added two identical lines, each took 16 seconds.
LL = mlines.Line2D(np.arange(1.5e6), np.sin(np.arange(1.5e6)))
t = time(); ax._update_line_limits(LL); time()-t
###0.1733548641204834
## But when we made another identical line, updating the limits was
## fast.
# Below are similar experiments:
LL = mlines.Line2D(np.arange(1.5e6), 2*np.sin(np.arange(1.5e6)))
t = time(); ax._update_line_limits(LL); time()-t
###0.18362092971801758
## with a fresh axes:
plt.clf()
ax = plt.gca()
LL = mlines.Line2D(np.arange(1.5e6), 2*np.sin(np.arange(1.5e6)))
t = time(); ax._update_line_limits(LL); time()-t
###0.22244811058044434
t = time(); ax.add_line(LL); time()-t
###16.724560976028442
What is going on? I used print statements inside add_line() to verify 
that all the time is in _update_line_limits(), which runs one or two 
orders of magnitude slower when run inside of add_line than when run 
outside--even if I run the preceding parts of add_line first.
Eric

Showing 4 results of 4

Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /