SourceForge logo
SourceForge logo
Menu

matplotlib-checkins — Commit notification. DO NOT POST to this list, just subscribe to it.

You can subscribe to this list here.

2007 Jan
Feb
Mar
Apr
May
Jun
Jul
(115)
Aug
(120)
Sep
(137)
Oct
(170)
Nov
(461)
Dec
(263)
2008 Jan
(120)
Feb
(74)
Mar
(35)
Apr
(74)
May
(245)
Jun
(356)
Jul
(240)
Aug
(115)
Sep
(78)
Oct
(225)
Nov
(98)
Dec
(271)
2009 Jan
(132)
Feb
(84)
Mar
(74)
Apr
(56)
May
(90)
Jun
(79)
Jul
(83)
Aug
(296)
Sep
(214)
Oct
(76)
Nov
(82)
Dec
(66)
2010 Jan
(46)
Feb
(58)
Mar
(51)
Apr
(77)
May
(58)
Jun
(126)
Jul
(128)
Aug
(64)
Sep
(50)
Oct
(44)
Nov
(48)
Dec
(54)
2011 Jan
(68)
Feb
(52)
Mar
Apr
May
Jun
Jul
Aug
Sep
Oct
Nov
Dec
(1)
2018 Jan
Feb
Mar
Apr
May
(1)
Jun
Jul
Aug
Sep
Oct
Nov
Dec
S M T W T F S
1
(6)
2
(17)
3
(11)
4
(12)
5
(16)
6
(6)
7
(5)
8
(8)
9
(24)
10
(15)
11
(12)
12
(22)
13
(30)
14
(16)
15
(6)
16
(15)
17
(20)
18
(4)
19
(11)
20
(16)
21
(2)
22
(17)
23
(16)
24
(18)
25
(4)
26
(9)
27
(12)
28
(2)
29
30
(4)





Showing results of 356

1 2 3 .. 15 > >> (Page 1 of 15)
From: <ds...@us...> - 2008年06月30日 23:14:47
Revision: 5701
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5701&view=rev
Author: dsdale
Date: 2008年06月30日 16:14:42 -0700 (2008年6月30日)
Log Message:
-----------
another attempt to fix TextWithDash
Modified Paths:
--------------
 trunk/matplotlib/CHANGELOG
 trunk/matplotlib/lib/matplotlib/text.py
Modified: trunk/matplotlib/CHANGELOG
===================================================================
--- trunk/matplotlib/CHANGELOG	2008年06月30日 13:24:13 UTC (rev 5700)
+++ trunk/matplotlib/CHANGELOG	2008年06月30日 23:14:42 UTC (rev 5701)
@@ -1,3 +1,5 @@
+2008年06月30日 Another attempt to fix TextWithDash - DSD
+
 2008年06月30日 Removed Qt4 NavigationToolbar2.destroy -- it appears to 
 have been unnecessary and caused a bug reported by P. 
 Raybaut - DSD 
Modified: trunk/matplotlib/lib/matplotlib/text.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/text.py	2008年06月30日 13:24:13 UTC (rev 5700)
+++ trunk/matplotlib/lib/matplotlib/text.py	2008年06月30日 23:14:42 UTC (rev 5701)
@@ -298,7 +298,12 @@
 
 bbox, info = self._get_layout(renderer)
 trans = self.get_transform()
- posx, posy = self.get_position()
+
+ # don't use self.get_position here, which refers to text position
+ # in Text, and dash position in TextWithDash:
+ posx = float(self.convert_xunits(self._x))
+ posy = float(self.convert_yunits(self._y))
+
 posx, posy = trans.transform_point((posx, posy))
 canvasw, canvash = renderer.get_canvas_width_height()
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <ds...@us...> - 2008年06月30日 13:24:26
Revision: 5700
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5700&view=rev
Author: dsdale
Date: 2008年06月30日 06:24:13 -0700 (2008年6月30日)
Log Message:
-----------
removed Qt4's NavigationToolbar2.destroy method
Modified Paths:
--------------
 branches/v0_91_maint/CHANGELOG
 branches/v0_91_maint/lib/matplotlib/backends/backend_qt4.py
Modified: branches/v0_91_maint/CHANGELOG
===================================================================
--- branches/v0_91_maint/CHANGELOG	2008年06月30日 13:21:19 UTC (rev 5699)
+++ branches/v0_91_maint/CHANGELOG	2008年06月30日 13:24:13 UTC (rev 5700)
@@ -1,3 +1,7 @@
+2008年06月30日 Removed Qt4 NavigationToolbar2.destroy -- it appears to
+ have been unnecessary and caused a bug reported by P.
+ Raybaut - DSD
+
 2008年06月26日 Fix mathtext bug for expressions like $x_{\leftarrow}$ - MGD
 
 2008年06月26日 Fix direction of horizontal/vertical hatches - MGD
Modified: branches/v0_91_maint/lib/matplotlib/backends/backend_qt4.py
===================================================================
--- branches/v0_91_maint/lib/matplotlib/backends/backend_qt4.py	2008年06月30日 13:21:19 UTC (rev 5699)
+++ branches/v0_91_maint/lib/matplotlib/backends/backend_qt4.py	2008年06月30日 13:24:13 UTC (rev 5700)
@@ -340,13 +340,6 @@
 # reference holder for subplots_adjust window
 self.adj_window = None
 
- def destroy( self ):
- for text, tooltip_text, image_file, callback in self.toolitems:
- if text is not None:
- QtCore.QObject.disconnect( self.buttons[ text ],
- QtCore.SIGNAL( 'clicked()' ),
- getattr( self, callback ) )
-
 def dynamic_update( self ):
 self.canvas.draw()
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <ds...@us...> - 2008年06月30日 13:21:30
Revision: 5699
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5699&view=rev
Author: dsdale
Date: 2008年06月30日 06:21:19 -0700 (2008年6月30日)
Log Message:
-----------
removed Qt4's NavigationToolbar2.destroy method
Modified Paths:
--------------
 trunk/matplotlib/CHANGELOG
 trunk/matplotlib/lib/matplotlib/backends/backend_qt4.py
Modified: trunk/matplotlib/CHANGELOG
===================================================================
--- trunk/matplotlib/CHANGELOG	2008年06月30日 12:13:55 UTC (rev 5698)
+++ trunk/matplotlib/CHANGELOG	2008年06月30日 13:21:19 UTC (rev 5699)
@@ -1,3 +1,7 @@
+2008年06月30日 Removed Qt4 NavigationToolbar2.destroy -- it appears to 
+ have been unnecessary and caused a bug reported by P. 
+ Raybaut - DSD 
+
 2008年06月27日 Fixed tick positioning bug - MM
 
 2008年06月27日 Fix dashed text bug where text was at the wrong end of the
Modified: trunk/matplotlib/lib/matplotlib/backends/backend_qt4.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/backends/backend_qt4.py	2008年06月30日 12:13:55 UTC (rev 5698)
+++ trunk/matplotlib/lib/matplotlib/backends/backend_qt4.py	2008年06月30日 13:21:19 UTC (rev 5699)
@@ -311,13 +311,6 @@
 # reference holder for subplots_adjust window
 self.adj_window = None
 
- def destroy( self ):
- for text, tooltip_text, image_file, callback in self.toolitems:
- if text is not None:
- QtCore.QObject.disconnect( self.buttons[ text ],
- QtCore.SIGNAL( 'clicked()' ),
- getattr( self, callback ) )
-
 def dynamic_update( self ):
 self.canvas.draw()
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月30日 12:13:59
Revision: 5698
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5698&view=rev
Author: mdboom
Date: 2008年06月30日 05:13:55 -0700 (2008年6月30日)
Log Message:
-----------
Fixed inverse of natural log bug. (Thanks, Ryan May)
Modified Paths:
--------------
 trunk/matplotlib/lib/matplotlib/scale.py
Modified: trunk/matplotlib/lib/matplotlib/scale.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/scale.py	2008年06月28日 13:50:45 UTC (rev 5697)
+++ trunk/matplotlib/lib/matplotlib/scale.py	2008年06月30日 12:13:55 UTC (rev 5698)
@@ -134,7 +134,7 @@
 return ma.power(np.e, a) / np.e
 
 def inverted(self):
- return LogScale.Log2Transform()
+ return LogScale.NaturalLogTransform()
 
 class LogTransform(Transform):
 input_dims = 1
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月28日 13:50:51
Revision: 5697
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5697&view=rev
Author: jdh2358
Date: 2008年06月28日 06:50:45 -0700 (2008年6月28日)
Log Message:
-----------
reverting text with dash fixes; see post on mailing list
Modified Paths:
--------------
 trunk/matplotlib/lib/matplotlib/text.py
Modified: trunk/matplotlib/lib/matplotlib/text.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/text.py	2008年06月28日 01:10:58 UTC (rev 5696)
+++ trunk/matplotlib/lib/matplotlib/text.py	2008年06月28日 13:50:45 UTC (rev 5697)
@@ -745,8 +745,8 @@
 
 def get_position(self):
 "Return x, y as tuple"
- x = float(self.convert_xunits(self._x))
- y = float(self.convert_yunits(self._y))
+ x = float(self.convert_xunits(self._dashx))
+ y = float(self.convert_yunits(self._dashy))
 return x, y
 
 def get_prop_tup(self):
@@ -939,8 +939,7 @@
 
 ACCEPTS: float
 """
- self._x = float(x)
- self._dashx = self._x
+ self._dashx = float(x)
 
 def set_y(self, y):
 """
@@ -948,8 +947,7 @@
 
 ACCEPTS: float
 """
- self._y = float(y)
- self._dashy = self._y
+ self._dashy = float(y)
 
 def set_transform(self, t):
 """
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <mme...@us...> - 2008年06月28日 01:11:00
Revision: 5696
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5696&view=rev
Author: mmetz_bn
Date: 2008年06月27日 18:10:58 -0700 (2008年6月27日)
Log Message:
-----------
Fixed tick positioning bug
Modified Paths:
--------------
 trunk/matplotlib/CHANGELOG
 trunk/matplotlib/lib/matplotlib/text.py
Modified: trunk/matplotlib/CHANGELOG
===================================================================
--- trunk/matplotlib/CHANGELOG	2008年06月27日 18:54:51 UTC (rev 5695)
+++ trunk/matplotlib/CHANGELOG	2008年06月28日 01:10:58 UTC (rev 5696)
@@ -1,3 +1,5 @@
+2008年06月27日 Fixed tick positioning bug - MM
+
 2008年06月27日 Fix dashed text bug where text was at the wrong end of the
 dash - MGD
 
Modified: trunk/matplotlib/lib/matplotlib/text.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/text.py	2008年06月27日 18:54:51 UTC (rev 5695)
+++ trunk/matplotlib/lib/matplotlib/text.py	2008年06月28日 01:10:58 UTC (rev 5696)
@@ -939,7 +939,8 @@
 
 ACCEPTS: float
 """
- self._dashx = float(x)
+ self._x = float(x)
+ self._dashx = self._x
 
 def set_y(self, y):
 """
@@ -947,7 +948,8 @@
 
 ACCEPTS: float
 """
- self._dashy = float(y)
+ self._y = float(y)
+ self._dashy = self._y
 
 def set_transform(self, t):
 """
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 18:54:53
Revision: 5695
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5695&view=rev
Author: mdboom
Date: 2008年06月27日 11:54:51 -0700 (2008年6月27日)
Log Message:
-----------
Fix Figure.add_axes docstring formatting bugs.
Modified Paths:
--------------
 trunk/matplotlib/lib/matplotlib/figure.py
Modified: trunk/matplotlib/lib/matplotlib/figure.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/figure.py	2008年06月27日 18:53:11 UTC (rev 5694)
+++ trunk/matplotlib/lib/matplotlib/figure.py	2008年06月27日 18:54:51 UTC (rev 5695)
@@ -636,13 +636,15 @@
 
 def add_axes(self, *args, **kwargs):
 """
- Add an a axes with axes rect [left, bottom, width, height] where all
- quantities are in fractions of figure width and height. kwargs are
- legal Axes kwargs plus "projection" which sets the projection type
- of the axes. (For backward compatibility, *polar=True* may also be
- provided, which is equivalent to *projection='polar'*).
- Valid values for "projection" are: %s. Some of these projections
- support additional kwargs, which may be provided to add_axes::
+ Add an a axes with axes rect [*left*, *bottom*, *width*,
+ *height*] where all quantities are in fractions of figure
+ width and height. kwargs are legal
+ :class:`~matplotlib.axes.Axes` kwargs plus *projection* which
+ sets the projection type of the axes. (For backward
+ compatibility, ``polar=True`` may also be provided, which is
+ equivalent to ``projection='polar'``). Valid values for
+ *projection* are: %s. Some of these projections support
+ additional kwargs, which may be provided to :meth:`add_axes`::
 
 rect = l,b,w,h
 fig.add_axes(rect)
@@ -651,13 +653,14 @@
 fig.add_axes(rect, projection='polar')
 fig.add_axes(ax) # add an Axes instance
 
- If the figure already has an axes with key *args, *kwargs then it will
- simply make that axes current and return it. If you do not want this
- behavior, eg you want to force the creation of a new axes, you must
- use a unique set of args and kwargs. The artist "label" attribute has
- been exposed for this purpose. Eg, if you want two axes that are
- otherwise identical to be added to the figure, make sure you give them
- unique labels::
+ If the figure already has an axes with the same parameters,
+ then it will simply make that axes current and return it. If
+ you do not want this behavior, eg. you want to force the
+ creation of a new axes, you must use a unique set of args and
+ kwargs. The axes :attr:`~matplotlib.axes.Axes.label`
+ attribute has been exposed for this purpose. Eg., if you want
+ two axes that are otherwise identical to be added to the
+ figure, make sure you give them unique labels::
 
 fig.add_axes(rect, label='axes1')
 fig.add_axes(rect, label='axes2')
@@ -665,8 +668,9 @@
 The :class:`~matplotlib.axes.Axes` instance will be returned.
 
 The following kwargs are supported:
+
 %s
- """ % (", ".join(get_projection_names()), '%(Axes)s')
+ """
 
 key = self._make_key(*args, **kwargs)
 
@@ -699,6 +703,7 @@
 self._seen[key] = a
 return a
 
+ add_axes.__doc__ = add_axes.__doc__ % (", ".join(get_projection_names()), '%(Axes)s')
 add_axes.__doc__ = dedent(add_axes.__doc__) % artist.kwdocd
 
 def add_subplot(self, *args, **kwargs):
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 18:53:16
Revision: 5694
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5694&view=rev
Author: mdboom
Date: 2008年06月27日 11:53:11 -0700 (2008年6月27日)
Log Message:
-----------
Fix dashed text bug where text was at the wrong end of the dash (Thanks Andrea Gavana)
Modified Paths:
--------------
 trunk/matplotlib/CHANGELOG
 trunk/matplotlib/lib/matplotlib/text.py
Modified: trunk/matplotlib/CHANGELOG
===================================================================
--- trunk/matplotlib/CHANGELOG	2008年06月27日 15:42:44 UTC (rev 5693)
+++ trunk/matplotlib/CHANGELOG	2008年06月27日 18:53:11 UTC (rev 5694)
@@ -1,3 +1,6 @@
+2008年06月27日 Fix dashed text bug where text was at the wrong end of the
+ dash - MGD
+
 2008年06月26日 Fix mathtext bug for expressions like $x_{\leftarrow}$ - MGD
 
 2008年06月26日 Fix direction of horizontal/vertical hatches - MGD
Modified: trunk/matplotlib/lib/matplotlib/text.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/text.py	2008年06月27日 15:42:44 UTC (rev 5693)
+++ trunk/matplotlib/lib/matplotlib/text.py	2008年06月27日 18:53:11 UTC (rev 5694)
@@ -745,8 +745,8 @@
 
 def get_position(self):
 "Return x, y as tuple"
- x = float(self.convert_xunits(self._dashx))
- y = float(self.convert_yunits(self._dashy))
+ x = float(self.convert_xunits(self._x))
+ y = float(self.convert_yunits(self._y))
 return x, y
 
 def get_prop_tup(self):
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:55:31
Revision: 5689
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5689&view=rev
Author: jdh2358
Date: 2008年06月27日 08:33:17 -0700 (2008年6月27日)
Log Message:
-----------
fixed errorbar demo
Modified Paths:
--------------
 trunk/matplotlib/doc/sphinxext/plot_directive.py
 trunk/matplotlib/lib/matplotlib/contour.py
Modified: trunk/matplotlib/doc/sphinxext/plot_directive.py
===================================================================
--- trunk/matplotlib/doc/sphinxext/plot_directive.py	2008年06月27日 15:25:50 UTC (rev 5688)
+++ trunk/matplotlib/doc/sphinxext/plot_directive.py	2008年06月27日 15:33:17 UTC (rev 5689)
@@ -43,7 +43,7 @@
 template = """
 .. htmlonly::
 
- [`py <../%(srcdir)s/%(basename)s.py>`__,
+ [`source code <../%(srcdir)s/%(basename)s.py>`__,
 `png <../%(srcdir)s/%(basename)s.hires.png>`__,
 `pdf <../%(srcdir)s/%(basename)s.pdf>`__]
 
Modified: trunk/matplotlib/lib/matplotlib/contour.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/contour.py	2008年06月27日 15:25:50 UTC (rev 5688)
+++ trunk/matplotlib/lib/matplotlib/contour.py	2008年06月27日 15:33:17 UTC (rev 5689)
@@ -893,5 +893,7 @@
 be removed. Chunking introduces artifacts at the chunk boundaries
 unless *antialiased* is *False*.
 
+ **Example:**
+
 .. plot:: contour_demo.py
 """
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:53:17
Revision: 5691
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5691&view=rev
Author: jdh2358
Date: 2008年06月27日 08:39:28 -0700 (2008年6月27日)
Log Message:
-----------
removing the copied files I accidentally added (sigh). It is confusing to put autogenerated files next to legit files in pyplot...
Removed Paths:
-------------
 trunk/matplotlib/doc/pyplots/arrow_demo.py
 trunk/matplotlib/doc/pyplots/axhspan_demo.py
 trunk/matplotlib/doc/pyplots/bar_stacked.py
 trunk/matplotlib/doc/pyplots/broken_barh.py
 trunk/matplotlib/doc/pyplots/cohere_demo.py
 trunk/matplotlib/doc/pyplots/csd_demo.py
 trunk/matplotlib/doc/pyplots/figimage_demo.py
 trunk/matplotlib/doc/pyplots/figlegend_demo.py
 trunk/matplotlib/doc/pyplots/fill_demo.py
 trunk/matplotlib/doc/pyplots/hexbin_demo.py
 trunk/matplotlib/doc/pyplots/histogram_demo.py
 trunk/matplotlib/doc/pyplots/image_demo.py
 trunk/matplotlib/doc/pyplots/log_demo.py
 trunk/matplotlib/doc/pyplots/xcorr_demo.py
Deleted: trunk/matplotlib/doc/pyplots/arrow_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/arrow_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/arrow_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,313 +0,0 @@
-#!/usr/bin/env python
-"""Arrow drawing example for the new fancy_arrow facilities.
-
-Code contributed by: Rob Knight <ro...@sp...>
-
-usage:
-
- python arrow_demo.py realistic|full|sample|extreme
-
-
-"""
-from pylab import *
-
-rates_to_bases={'r1':'AT', 'r2':'TA', 'r3':'GA','r4':'AG','r5':'CA','r6':'AC', \
- 'r7':'GT', 'r8':'TG', 'r9':'CT','r10':'TC','r11':'GC','r12':'CG'}
-numbered_bases_to_rates = dict([(v,k) for k, v in rates_to_bases.items()])
-lettered_bases_to_rates = dict([(v, 'r'+v) for k, v in rates_to_bases.items()])
-def add_dicts(d1, d2):
- """Adds two dicts and returns the result."""
- result = d1.copy()
- result.update(d2)
- return result
-
-def make_arrow_plot(data, size=4, display='length', shape='right', \
- max_arrow_width=0.03, arrow_sep = 0.02, alpha=0.5, \
- normalize_data=False, ec=None, labelcolor=None, \
- head_starts_at_zero=True, rate_labels=lettered_bases_to_rates,\
- **kwargs):
- """Makes an arrow plot.
-
- Parameters:
-
- data: dict with probabilities for the bases and pair transitions.
- size: size of the graph in inches.
- display: 'length', 'width', or 'alpha' for arrow property to change.
- shape: 'full', 'left', or 'right' for full or half arrows.
- max_arrow_width: maximum width of an arrow, data coordinates.
- arrow_sep: separation between arrows in a pair, data coordinates.
- alpha: maximum opacity of arrows, default 0.8.
-
- **kwargs can be anything allowed by a Arrow object, e.g.
- linewidth and edgecolor.
- """
-
- xlim(-0.5,1.5)
- ylim(-0.5,1.5)
- gcf().set_size_inches(size,size)
- xticks([])
- yticks([])
- max_text_size = size*12
- min_text_size = size
- label_text_size = size*2.5
- text_params={'ha':'center', 'va':'center', 'family':'sans-serif',\
- 'fontweight':'bold'}
- r2 = sqrt(2)
-
- deltas = {\
- 'AT':(1,0),
- 'TA':(-1,0),
- 'GA':(0,1),
- 'AG':(0,-1),
- 'CA':(-1/r2, 1/r2),
- 'AC':(1/r2, -1/r2),
- 'GT':(1/r2, 1/r2),
- 'TG':(-1/r2,-1/r2),
- 'CT':(0,1),
- 'TC':(0,-1),
- 'GC':(1,0),
- 'CG':(-1,0)
- }
-
- colors = {\
- 'AT':'r',
- 'TA':'k',
- 'GA':'g',
- 'AG':'r',
- 'CA':'b',
- 'AC':'r',
- 'GT':'g',
- 'TG':'k',
- 'CT':'b',
- 'TC':'k',
- 'GC':'g',
- 'CG':'b'
- }
-
- label_positions = {\
- 'AT':'center',
- 'TA':'center',
- 'GA':'center',
- 'AG':'center',
- 'CA':'left',
- 'AC':'left',
- 'GT':'left',
- 'TG':'left',
- 'CT':'center',
- 'TC':'center',
- 'GC':'center',
- 'CG':'center'
- }
-
-
- def do_fontsize(k):
- return float(clip(max_text_size*sqrt(data[k]),\
- min_text_size,max_text_size))
-
- A = text(0,1, '$A_3$', color='r', size=do_fontsize('A'), **text_params)
- T = text(1,1, '$T_3$', color='k', size=do_fontsize('T'), **text_params)
- G = text(0,0, '$G_3$', color='g', size=do_fontsize('G'), **text_params)
- C = text(1,0, '$C_3$', color='b', size=do_fontsize('C'), **text_params)
-
- arrow_h_offset = 0.25 #data coordinates, empirically determined
- max_arrow_length = 1 - 2*arrow_h_offset
-
- max_arrow_width = max_arrow_width
- max_head_width = 2.5*max_arrow_width
- max_head_length = 2*max_arrow_width
- arrow_params={'length_includes_head':True, 'shape':shape, \
- 'head_starts_at_zero':head_starts_at_zero}
- ax = gca()
- sf = 0.6 #max arrow size represents this in data coords
-
- d = (r2/2 + arrow_h_offset - 0.5)/r2 #distance for diags
- r2v = arrow_sep/r2 #offset for diags
-
- #tuple of x, y for start position
- positions = {\
- 'AT': (arrow_h_offset, 1+arrow_sep),
- 'TA': (1-arrow_h_offset, 1-arrow_sep),
- 'GA': (-arrow_sep, arrow_h_offset),
- 'AG': (arrow_sep, 1-arrow_h_offset),
- 'CA': (1-d-r2v, d-r2v),
- 'AC': (d+r2v, 1-d+r2v),
- 'GT': (d-r2v, d+r2v),
- 'TG': (1-d+r2v, 1-d-r2v),
- 'CT': (1-arrow_sep, arrow_h_offset),
- 'TC': (1+arrow_sep, 1-arrow_h_offset),
- 'GC': (arrow_h_offset, arrow_sep),
- 'CG': (1-arrow_h_offset, -arrow_sep),
- }
-
- if normalize_data:
- #find maximum value for rates, i.e. where keys are 2 chars long
- max_val = 0
- for k, v in data.items():
- if len(k) == 2:
- max_val = max(max_val, v)
- #divide rates by max val, multiply by arrow scale factor
- for k, v in data.items():
- data[k] = v/max_val*sf
-
- def draw_arrow(pair, alpha=alpha, ec=ec, labelcolor=labelcolor):
- #set the length of the arrow
- if display == 'length':
- length = max_head_length+(max_arrow_length-max_head_length)*\
- data[pair]/sf
- else:
- length = max_arrow_length
- #set the transparency of the arrow
- if display == 'alph':
- alpha = min(data[pair]/sf, alpha)
- else:
- alpha=alpha
- #set the width of the arrow
- if display == 'width':
- scale = data[pair]/sf
- width = max_arrow_width*scale
- head_width = max_head_width*scale
- head_length = max_head_length*scale
- else:
- width = max_arrow_width
- head_width = max_head_width
- head_length = max_head_length
-
- fc = colors[pair]
- ec = ec or fc
-
- x_scale, y_scale = deltas[pair]
- x_pos, y_pos = positions[pair]
- arrow(x_pos, y_pos, x_scale*length, y_scale*length, \
- fc=fc, ec=ec, alpha=alpha, width=width, head_width=head_width, \
- head_length=head_length, **arrow_params)
-
- #figure out coordinates for text
- #if drawing relative to base: x and y are same as for arrow
- #dx and dy are one arrow width left and up
- #need to rotate based on direction of arrow, use x_scale and y_scale
- #as sin x and cos x?
- sx, cx = y_scale, x_scale
-
- where = label_positions[pair]
- if where == 'left':
- orig_position = 3*array([[max_arrow_width, max_arrow_width]])
- elif where == 'absolute':
- orig_position = array([[max_arrow_length/2.0, 3*max_arrow_width]])
- elif where == 'right':
- orig_position = array([[length-3*max_arrow_width,\
- 3*max_arrow_width]])
- elif where == 'center':
- orig_position = array([[length/2.0, 3*max_arrow_width]])
- else:
- raise ValueError, "Got unknown position parameter %s" % where
-
-
-
- M = array([[cx, sx],[-sx,cx]])
- coords = dot(orig_position, M) + [[x_pos, y_pos]]
- x, y = ravel(coords)
- orig_label = rate_labels[pair]
- label = '$%s_{_{\mathrm{%s}}}$' % (orig_label[0], orig_label[1:])
-
- text(x, y, label, size=label_text_size, ha='center', va='center', \
- color=labelcolor or fc)
-
- for p in positions.keys():
- draw_arrow(p)
-
- #test data
-all_on_max = dict([(i, 1) for i in 'TCAG'] + \
- [(i+j, 0.6) for i in 'TCAG' for j in 'TCAG'])
-
-realistic_data = {
- 'A':0.4,
- 'T':0.3,
- 'G':0.5,
- 'C':0.2,
- 'AT':0.4,
- 'AC':0.3,
- 'AG':0.2,
- 'TA':0.2,
- 'TC':0.3,
- 'TG':0.4,
- 'CT':0.2,
- 'CG':0.3,
- 'CA':0.2,
- 'GA':0.1,
- 'GT':0.4,
- 'GC':0.1,
- }
-
-extreme_data = {
- 'A':0.75,
- 'T':0.10,
- 'G':0.10,
- 'C':0.05,
- 'AT':0.6,
- 'AC':0.3,
- 'AG':0.1,
- 'TA':0.02,
- 'TC':0.3,
- 'TG':0.01,
- 'CT':0.2,
- 'CG':0.5,
- 'CA':0.2,
- 'GA':0.1,
- 'GT':0.4,
- 'GC':0.2,
- }
-
-sample_data = {
- 'A':0.2137,
- 'T':0.3541,
- 'G':0.1946,
- 'C':0.2376,
- 'AT':0.0228,
- 'AC':0.0684,
- 'AG':0.2056,
- 'TA':0.0315,
- 'TC':0.0629,
- 'TG':0.0315,
- 'CT':0.1355,
- 'CG':0.0401,
- 'CA':0.0703,
- 'GA':0.1824,
- 'GT':0.0387,
- 'GC':0.1106,
- }
-
-
-if __name__ == '__main__':
- from sys import argv
- d = None
- if len(argv) > 1:
- if argv[1] == 'full':
- d = all_on_max
- scaled = False
- elif argv[1] == 'extreme':
- d = extreme_data
- scaled = False
- elif argv[1] == 'realistic':
- d = realistic_data
- scaled = False
- elif argv[1] == 'sample':
- d = sample_data
- scaled = True
- if d is None:
- d = all_on_max
- scaled=False
- if len(argv) > 2:
- display = argv[2]
- else:
- display = 'length'
-
- size = 4
- figure(figsize=(size,size))
-
- make_arrow_plot(d, display=display, linewidth=0.001, edgecolor=None,
- normalize_data=scaled, head_starts_at_zero=True, size=size)
-
- draw()
- #savefig('arrows.png')
- #print 'Example saved to file "arrows.png"'
- show()
Deleted: trunk/matplotlib/doc/pyplots/axhspan_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/axhspan_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/axhspan_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,32 +0,0 @@
-import numpy as np
-import matplotlib.pyplot as plt
-
-t = np.arange(-1,2, .01)
-s = np.sin(2*np.pi*t)
-
-plt.plot(t,s)
-# draw a thick red hline at y=0 that spans the xrange
-l = plt.axhline(linewidth=4, color='r')
-
-# draw a default hline at y=1 that spans the xrange
-l = plt.axhline(y=1)
-
-# draw a default vline at x=1 that spans the xrange
-l = plt.axvline(x=1)
-
-# draw a thick blue vline at x=0 that spans the the upper quadrant of
-# the yrange
-l = plt.axvline(x=0, ymin=0.75, linewidth=4, color='b')
-
-# draw a default hline at y=.5 that spans the the middle half of
-# the axes
-l = plt.axhline(y=.5, xmin=0.25, xmax=0.75)
-
-p = plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
-
-p = plt.axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
-
-plt.axis([-1,2,-1,2])
-
-
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/bar_stacked.py
===================================================================
--- trunk/matplotlib/doc/pyplots/bar_stacked.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/bar_stacked.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,25 +0,0 @@
-#!/usr/bin/env python
-# a stacked bar plot with errorbars
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-N = 5
-menMeans = (20, 35, 30, 35, 27)
-womenMeans = (25, 32, 34, 20, 25)
-menStd = (2, 3, 4, 1, 2)
-womenStd = (3, 5, 2, 3, 3)
-ind = np.arange(N) # the x locations for the groups
-width = 0.35 # the width of the bars: can also be len(x) sequence
-
-p1 = plt.bar(ind, menMeans, width, color='r', yerr=womenStd)
-p2 = plt.bar(ind, womenMeans, width, color='y',
- bottom=menMeans, yerr=menStd)
-
-plt.ylabel('Scores')
-plt.title('Scores by group and gender')
-plt.xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') )
-plt.yticks(np.arange(0,81,10))
-plt.legend( (p1[0], p2[0]), ('Men', 'Women') )
-
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/broken_barh.py
===================================================================
--- trunk/matplotlib/doc/pyplots/broken_barh.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/broken_barh.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,24 +0,0 @@
-"""
-Make a "broken" horizontal bar plot, ie one with gaps
-"""
-import matplotlib.pyplot as plt
-
-fig = plt.figure()
-ax = fig.add_subplot(111)
-ax.broken_barh([ (110, 30), (150, 10) ] , (10, 9), facecolors='blue')
-ax.broken_barh([ (10, 50), (100, 20), (130, 10)] , (20, 9),
- facecolors=('red', 'yellow', 'green'))
-ax.set_ylim(5,35)
-ax.set_xlim(0,200)
-ax.set_xlabel('seconds since start')
-ax.set_yticks([15,25])
-ax.set_yticklabels(['Bill', 'Jim'])
-ax.grid(True)
-ax.annotate('race interrupted', (61, 25),
- xytext=(0.8, 0.9), textcoords='axes fraction',
- arrowprops=dict(facecolor='black', shrink=0.05),
- fontsize=16,
- horizontalalignment='right', verticalalignment='top')
-
-#fig.savefig('broken_barh', dpi=100)
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/cohere_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/cohere_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/cohere_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,36 +0,0 @@
-#!/usr/bin/env python
-"""
-Compute the coherence of two signals
-"""
-import numpy as np
-import matplotlib.pyplot as plt
-
-# make a little extra space between the subplots
-plt.subplots_adjust(wspace=0.5)
-
-dt = 0.01
-t = np.arange(0, 30, dt)
-nse1 = np.random.randn(len(t)) # white noise 1
-nse2 = np.random.randn(len(t)) # white noise 2
-r = np.exp(-t/0.05)
-
-cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
-cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
-
-# two signals with a coherent part and a random part
-s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
-s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
-
-plt.subplot(211)
-plt.plot(t, s1, 'b-', t, s2, 'g-')
-plt.xlim(0,5)
-plt.xlabel('time')
-plt.ylabel('s1 and s2')
-plt.grid(True)
-
-plt.subplot(212)
-cxy, f = plt.cohere(s1, s2, 256, 1./dt)
-plt.ylabel('coherence')
-plt.show()
-
-
Deleted: trunk/matplotlib/doc/pyplots/csd_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/csd_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/csd_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,36 +0,0 @@
-#!/usr/bin/env python
-"""
-Compute the cross spectral density of two signals
-"""
-import numpy as np
-import matplotlib.pyplot as plt
-
-# make a little extra space between the subplots
-plt.subplots_adjust(wspace=0.5)
-
-dt = 0.01
-t = np.arange(0, 30, dt)
-nse1 = np.random.randn(len(t)) # white noise 1
-nse2 = np.random.randn(len(t)) # white noise 2
-r = np.exp(-t/0.05)
-
-cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
-cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
-
-# two signals with a coherent part and a random part
-s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
-s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
-
-plt.subplot(211)
-plt.plot(t, s1, 'b-', t, s2, 'g-')
-plt.xlim(0,5)
-plt.xlabel('time')
-plt.ylabel('s1 and s2')
-plt.grid(True)
-
-plt.subplot(212)
-cxy, f = plt.csd(s1, s2, 256, 1./dt)
-plt.ylabel('CSD (db)')
-plt.show()
-
-
Deleted: trunk/matplotlib/doc/pyplots/figimage_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/figimage_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/figimage_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,21 +0,0 @@
-"""
-See pcolor_demo2 for a much faster way of generating pcolor plots
-"""
-import numpy as np
-import matplotlib
-import matplotlib.cm as cm
-import matplotlib.pyplot as plt
-
-
-fig = plt.figure(frameon=False)
-Z = np.arange(10000.0)
-Z.shape = 100,100
-Z[:,50:] = 1.
-
-im1 = plt.figimage(Z, xo=50, yo=0, cmap=cm.jet)
-im2 = plt.figimage(Z, xo=100, yo=100, alpha=.8, cmap=cm.jet)
-
-plt.show()
-
-
-
Deleted: trunk/matplotlib/doc/pyplots/figlegend_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/figlegend_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/figlegend_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,19 +0,0 @@
-import numpy as np
-import matplotlib.pyplot as plt
-
-fig = plt.figure()
-ax1 = fig.add_axes([0.1, 0.1, 0.4, 0.7])
-ax2 = fig.add_axes([0.55, 0.1, 0.4, 0.7])
-
-x = np.arange(0.0, 2.0, 0.02)
-y1 = np.sin(2*np.pi*x)
-y2 = np.exp(-x)
-l1, l2 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
-
-y3 = np.sin(4*np.pi*x)
-y4 = np.exp(-2*x)
-l3, l4 = ax2.plot(x, y3, 'yd-', x, y3, 'k^')
-
-fig.legend((l1, l2), ('Line 1', 'Line 2'), 'upper left')
-fig.legend((l3, l4), ('Line 3', 'Line 4'), 'upper right')
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/fill_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/fill_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/fill_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,10 +0,0 @@
-#!/usr/bin/env python
-import numpy as np
-import matplotlib.pyplot as plt
-
-t = np.arange(0.0, 1.01, 0.01)
-s = np.sin(2*2*np.pi*t)
-
-plt.fill(t, s*np.exp(-5*t), 'r')
-plt.grid(True)
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/hexbin_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/hexbin_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/hexbin_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,34 +0,0 @@
-"""
-hexbin is an axes method or pyplot function that is essentially
-a pcolor of a 2-D histogram with hexagonal cells. It can be
-much more informative than a scatter plot; in the first subplot
-below, try substituting 'scatter' for 'hexbin'.
-"""
-
-import numpy as np
-import matplotlib.pyplot as plt
-n = 100000
-x = np.random.standard_normal(n)
-y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n)
-xmin = x.min()
-xmax = x.max()
-ymin = y.min()
-ymax = y.max()
-
-plt.subplots_adjust(hspace=0.5)
-plt.subplot(121)
-plt.hexbin(x,y)
-plt.axis([xmin, xmax, ymin, ymax])
-plt.title("Hexagon binning")
-cb = plt.colorbar()
-cb.set_label('counts')
-
-plt.subplot(122)
-plt.hexbin(x,y,bins='log')
-plt.axis([xmin, xmax, ymin, ymax])
-plt.title("With a log color scale")
-cb = plt.colorbar()
-cb.set_label('log10(N)')
-
-plt.show()
-
Deleted: trunk/matplotlib/doc/pyplots/histogram_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/histogram_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/histogram_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,22 +0,0 @@
-#!/usr/bin/env python
-import numpy as np
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-mu, sigma = 100, 15
-x = mu + sigma*np.random.randn(10000)
-
-# the histogram of the data
-n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
-
-# add a 'best fit' line
-y = mlab.normpdf( bins, mu, sigma)
-l = plt.plot(bins, y, 'r--', linewidth=1)
-
-plt.xlabel('Smarts')
-plt.ylabel('Probability')
-plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
-plt.axis([40, 160, 0, 0.03])
-plt.grid(True)
-
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/image_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/image_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/image_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,18 +0,0 @@
-#!/usr/bin/env python
-import numpy as np
-import matplotlib.cm as cm
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-delta = 0.025
-x = y = np.arange(-3.0, 3.0, delta)
-X, Y = np.meshgrid(x, y)
-Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
-Z = Z2-Z1 # difference of Gaussians
-
-im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
- origin='lower', extent=[-3,3,-3,3])
-
-plt.show()
-
Deleted: trunk/matplotlib/doc/pyplots/log_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/log_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/log_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,25 +0,0 @@
-import numpy as np
-import matplotlib.pyplot as plt
-
-plt.subplots_adjust(hspace=0.4)
-t = np.arange(0.01, 20.0, 0.01)
-
-# log y axis
-plt.subplot(311)
-plt.semilogy(t, np.exp(-t/5.0))
-plt.ylabel('semilogy')
-plt.grid(True)
-
-# log x axis
-plt.subplot(312)
-plt.semilogx(t, np.sin(2*np.pi*t))
-plt.ylabel('semilogx')
-plt.grid(True)
-
-# log x and y axis
-plt.subplot(313)
-plt.loglog(t, 20*np.exp(-t/10.0), basex=4)
-plt.grid(True)
-plt.ylabel('loglog base 4 on x')
-
-plt.show()
Deleted: trunk/matplotlib/doc/pyplots/xcorr_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/xcorr_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
+++ trunk/matplotlib/doc/pyplots/xcorr_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
@@ -1,17 +0,0 @@
-import matplotlib.pyplot as plt
-import numpy as np
-
-x,y = np.random.randn(2,100)
-fig = plt.figure()
-ax1 = fig.add_subplot(211)
-ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
-ax1.grid(True)
-ax1.axhline(0, color='black', lw=2)
-
-ax2 = fig.add_subplot(212, sharex=ax1)
-ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
-ax2.grid(True)
-ax2.axhline(0, color='black', lw=2)
-
-plt.show()
-
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:51:55
Revision: 5690
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5690&view=rev
Author: jdh2358
Date: 2008年06月27日 08:34:32 -0700 (2008年6月27日)
Log Message:
-----------
added pyplots examples which I forgot to svn add in prev commit
Added Paths:
-----------
 trunk/matplotlib/doc/pyplots/arrow_demo.py
 trunk/matplotlib/doc/pyplots/axhspan_demo.py
 trunk/matplotlib/doc/pyplots/bar_stacked.py
 trunk/matplotlib/doc/pyplots/boxplot_demo.py
 trunk/matplotlib/doc/pyplots/broken_barh.py
 trunk/matplotlib/doc/pyplots/cohere_demo.py
 trunk/matplotlib/doc/pyplots/contour_demo.py
 trunk/matplotlib/doc/pyplots/csd_demo.py
 trunk/matplotlib/doc/pyplots/errorbar_demo.py
 trunk/matplotlib/doc/pyplots/figimage_demo.py
 trunk/matplotlib/doc/pyplots/figlegend_demo.py
 trunk/matplotlib/doc/pyplots/fill_demo.py
 trunk/matplotlib/doc/pyplots/hexbin_demo.py
 trunk/matplotlib/doc/pyplots/histogram_demo.py
 trunk/matplotlib/doc/pyplots/hline_demo.py
 trunk/matplotlib/doc/pyplots/image_demo.py
 trunk/matplotlib/doc/pyplots/log_demo.py
 trunk/matplotlib/doc/pyplots/xcorr_demo.py
Added: trunk/matplotlib/doc/pyplots/arrow_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/arrow_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/arrow_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,313 @@
+#!/usr/bin/env python
+"""Arrow drawing example for the new fancy_arrow facilities.
+
+Code contributed by: Rob Knight <ro...@sp...>
+
+usage:
+
+ python arrow_demo.py realistic|full|sample|extreme
+
+
+"""
+from pylab import *
+
+rates_to_bases={'r1':'AT', 'r2':'TA', 'r3':'GA','r4':'AG','r5':'CA','r6':'AC', \
+ 'r7':'GT', 'r8':'TG', 'r9':'CT','r10':'TC','r11':'GC','r12':'CG'}
+numbered_bases_to_rates = dict([(v,k) for k, v in rates_to_bases.items()])
+lettered_bases_to_rates = dict([(v, 'r'+v) for k, v in rates_to_bases.items()])
+def add_dicts(d1, d2):
+ """Adds two dicts and returns the result."""
+ result = d1.copy()
+ result.update(d2)
+ return result
+
+def make_arrow_plot(data, size=4, display='length', shape='right', \
+ max_arrow_width=0.03, arrow_sep = 0.02, alpha=0.5, \
+ normalize_data=False, ec=None, labelcolor=None, \
+ head_starts_at_zero=True, rate_labels=lettered_bases_to_rates,\
+ **kwargs):
+ """Makes an arrow plot.
+
+ Parameters:
+
+ data: dict with probabilities for the bases and pair transitions.
+ size: size of the graph in inches.
+ display: 'length', 'width', or 'alpha' for arrow property to change.
+ shape: 'full', 'left', or 'right' for full or half arrows.
+ max_arrow_width: maximum width of an arrow, data coordinates.
+ arrow_sep: separation between arrows in a pair, data coordinates.
+ alpha: maximum opacity of arrows, default 0.8.
+
+ **kwargs can be anything allowed by a Arrow object, e.g.
+ linewidth and edgecolor.
+ """
+
+ xlim(-0.5,1.5)
+ ylim(-0.5,1.5)
+ gcf().set_size_inches(size,size)
+ xticks([])
+ yticks([])
+ max_text_size = size*12
+ min_text_size = size
+ label_text_size = size*2.5
+ text_params={'ha':'center', 'va':'center', 'family':'sans-serif',\
+ 'fontweight':'bold'}
+ r2 = sqrt(2)
+
+ deltas = {\
+ 'AT':(1,0),
+ 'TA':(-1,0),
+ 'GA':(0,1),
+ 'AG':(0,-1),
+ 'CA':(-1/r2, 1/r2),
+ 'AC':(1/r2, -1/r2),
+ 'GT':(1/r2, 1/r2),
+ 'TG':(-1/r2,-1/r2),
+ 'CT':(0,1),
+ 'TC':(0,-1),
+ 'GC':(1,0),
+ 'CG':(-1,0)
+ }
+
+ colors = {\
+ 'AT':'r',
+ 'TA':'k',
+ 'GA':'g',
+ 'AG':'r',
+ 'CA':'b',
+ 'AC':'r',
+ 'GT':'g',
+ 'TG':'k',
+ 'CT':'b',
+ 'TC':'k',
+ 'GC':'g',
+ 'CG':'b'
+ }
+
+ label_positions = {\
+ 'AT':'center',
+ 'TA':'center',
+ 'GA':'center',
+ 'AG':'center',
+ 'CA':'left',
+ 'AC':'left',
+ 'GT':'left',
+ 'TG':'left',
+ 'CT':'center',
+ 'TC':'center',
+ 'GC':'center',
+ 'CG':'center'
+ }
+
+
+ def do_fontsize(k):
+ return float(clip(max_text_size*sqrt(data[k]),\
+ min_text_size,max_text_size))
+
+ A = text(0,1, '$A_3$', color='r', size=do_fontsize('A'), **text_params)
+ T = text(1,1, '$T_3$', color='k', size=do_fontsize('T'), **text_params)
+ G = text(0,0, '$G_3$', color='g', size=do_fontsize('G'), **text_params)
+ C = text(1,0, '$C_3$', color='b', size=do_fontsize('C'), **text_params)
+
+ arrow_h_offset = 0.25 #data coordinates, empirically determined
+ max_arrow_length = 1 - 2*arrow_h_offset
+
+ max_arrow_width = max_arrow_width
+ max_head_width = 2.5*max_arrow_width
+ max_head_length = 2*max_arrow_width
+ arrow_params={'length_includes_head':True, 'shape':shape, \
+ 'head_starts_at_zero':head_starts_at_zero}
+ ax = gca()
+ sf = 0.6 #max arrow size represents this in data coords
+
+ d = (r2/2 + arrow_h_offset - 0.5)/r2 #distance for diags
+ r2v = arrow_sep/r2 #offset for diags
+
+ #tuple of x, y for start position
+ positions = {\
+ 'AT': (arrow_h_offset, 1+arrow_sep),
+ 'TA': (1-arrow_h_offset, 1-arrow_sep),
+ 'GA': (-arrow_sep, arrow_h_offset),
+ 'AG': (arrow_sep, 1-arrow_h_offset),
+ 'CA': (1-d-r2v, d-r2v),
+ 'AC': (d+r2v, 1-d+r2v),
+ 'GT': (d-r2v, d+r2v),
+ 'TG': (1-d+r2v, 1-d-r2v),
+ 'CT': (1-arrow_sep, arrow_h_offset),
+ 'TC': (1+arrow_sep, 1-arrow_h_offset),
+ 'GC': (arrow_h_offset, arrow_sep),
+ 'CG': (1-arrow_h_offset, -arrow_sep),
+ }
+
+ if normalize_data:
+ #find maximum value for rates, i.e. where keys are 2 chars long
+ max_val = 0
+ for k, v in data.items():
+ if len(k) == 2:
+ max_val = max(max_val, v)
+ #divide rates by max val, multiply by arrow scale factor
+ for k, v in data.items():
+ data[k] = v/max_val*sf
+
+ def draw_arrow(pair, alpha=alpha, ec=ec, labelcolor=labelcolor):
+ #set the length of the arrow
+ if display == 'length':
+ length = max_head_length+(max_arrow_length-max_head_length)*\
+ data[pair]/sf
+ else:
+ length = max_arrow_length
+ #set the transparency of the arrow
+ if display == 'alph':
+ alpha = min(data[pair]/sf, alpha)
+ else:
+ alpha=alpha
+ #set the width of the arrow
+ if display == 'width':
+ scale = data[pair]/sf
+ width = max_arrow_width*scale
+ head_width = max_head_width*scale
+ head_length = max_head_length*scale
+ else:
+ width = max_arrow_width
+ head_width = max_head_width
+ head_length = max_head_length
+
+ fc = colors[pair]
+ ec = ec or fc
+
+ x_scale, y_scale = deltas[pair]
+ x_pos, y_pos = positions[pair]
+ arrow(x_pos, y_pos, x_scale*length, y_scale*length, \
+ fc=fc, ec=ec, alpha=alpha, width=width, head_width=head_width, \
+ head_length=head_length, **arrow_params)
+
+ #figure out coordinates for text
+ #if drawing relative to base: x and y are same as for arrow
+ #dx and dy are one arrow width left and up
+ #need to rotate based on direction of arrow, use x_scale and y_scale
+ #as sin x and cos x?
+ sx, cx = y_scale, x_scale
+
+ where = label_positions[pair]
+ if where == 'left':
+ orig_position = 3*array([[max_arrow_width, max_arrow_width]])
+ elif where == 'absolute':
+ orig_position = array([[max_arrow_length/2.0, 3*max_arrow_width]])
+ elif where == 'right':
+ orig_position = array([[length-3*max_arrow_width,\
+ 3*max_arrow_width]])
+ elif where == 'center':
+ orig_position = array([[length/2.0, 3*max_arrow_width]])
+ else:
+ raise ValueError, "Got unknown position parameter %s" % where
+
+
+
+ M = array([[cx, sx],[-sx,cx]])
+ coords = dot(orig_position, M) + [[x_pos, y_pos]]
+ x, y = ravel(coords)
+ orig_label = rate_labels[pair]
+ label = '$%s_{_{\mathrm{%s}}}$' % (orig_label[0], orig_label[1:])
+
+ text(x, y, label, size=label_text_size, ha='center', va='center', \
+ color=labelcolor or fc)
+
+ for p in positions.keys():
+ draw_arrow(p)
+
+ #test data
+all_on_max = dict([(i, 1) for i in 'TCAG'] + \
+ [(i+j, 0.6) for i in 'TCAG' for j in 'TCAG'])
+
+realistic_data = {
+ 'A':0.4,
+ 'T':0.3,
+ 'G':0.5,
+ 'C':0.2,
+ 'AT':0.4,
+ 'AC':0.3,
+ 'AG':0.2,
+ 'TA':0.2,
+ 'TC':0.3,
+ 'TG':0.4,
+ 'CT':0.2,
+ 'CG':0.3,
+ 'CA':0.2,
+ 'GA':0.1,
+ 'GT':0.4,
+ 'GC':0.1,
+ }
+
+extreme_data = {
+ 'A':0.75,
+ 'T':0.10,
+ 'G':0.10,
+ 'C':0.05,
+ 'AT':0.6,
+ 'AC':0.3,
+ 'AG':0.1,
+ 'TA':0.02,
+ 'TC':0.3,
+ 'TG':0.01,
+ 'CT':0.2,
+ 'CG':0.5,
+ 'CA':0.2,
+ 'GA':0.1,
+ 'GT':0.4,
+ 'GC':0.2,
+ }
+
+sample_data = {
+ 'A':0.2137,
+ 'T':0.3541,
+ 'G':0.1946,
+ 'C':0.2376,
+ 'AT':0.0228,
+ 'AC':0.0684,
+ 'AG':0.2056,
+ 'TA':0.0315,
+ 'TC':0.0629,
+ 'TG':0.0315,
+ 'CT':0.1355,
+ 'CG':0.0401,
+ 'CA':0.0703,
+ 'GA':0.1824,
+ 'GT':0.0387,
+ 'GC':0.1106,
+ }
+
+
+if __name__ == '__main__':
+ from sys import argv
+ d = None
+ if len(argv) > 1:
+ if argv[1] == 'full':
+ d = all_on_max
+ scaled = False
+ elif argv[1] == 'extreme':
+ d = extreme_data
+ scaled = False
+ elif argv[1] == 'realistic':
+ d = realistic_data
+ scaled = False
+ elif argv[1] == 'sample':
+ d = sample_data
+ scaled = True
+ if d is None:
+ d = all_on_max
+ scaled=False
+ if len(argv) > 2:
+ display = argv[2]
+ else:
+ display = 'length'
+
+ size = 4
+ figure(figsize=(size,size))
+
+ make_arrow_plot(d, display=display, linewidth=0.001, edgecolor=None,
+ normalize_data=scaled, head_starts_at_zero=True, size=size)
+
+ draw()
+ #savefig('arrows.png')
+ #print 'Example saved to file "arrows.png"'
+ show()
Added: trunk/matplotlib/doc/pyplots/axhspan_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/axhspan_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/axhspan_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,32 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+t = np.arange(-1,2, .01)
+s = np.sin(2*np.pi*t)
+
+plt.plot(t,s)
+# draw a thick red hline at y=0 that spans the xrange
+l = plt.axhline(linewidth=4, color='r')
+
+# draw a default hline at y=1 that spans the xrange
+l = plt.axhline(y=1)
+
+# draw a default vline at x=1 that spans the xrange
+l = plt.axvline(x=1)
+
+# draw a thick blue vline at x=0 that spans the the upper quadrant of
+# the yrange
+l = plt.axvline(x=0, ymin=0.75, linewidth=4, color='b')
+
+# draw a default hline at y=.5 that spans the the middle half of
+# the axes
+l = plt.axhline(y=.5, xmin=0.25, xmax=0.75)
+
+p = plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
+
+p = plt.axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
+
+plt.axis([-1,2,-1,2])
+
+
+plt.show()
Added: trunk/matplotlib/doc/pyplots/bar_stacked.py
===================================================================
--- trunk/matplotlib/doc/pyplots/bar_stacked.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/bar_stacked.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,25 @@
+#!/usr/bin/env python
+# a stacked bar plot with errorbars
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+N = 5
+menMeans = (20, 35, 30, 35, 27)
+womenMeans = (25, 32, 34, 20, 25)
+menStd = (2, 3, 4, 1, 2)
+womenStd = (3, 5, 2, 3, 3)
+ind = np.arange(N) # the x locations for the groups
+width = 0.35 # the width of the bars: can also be len(x) sequence
+
+p1 = plt.bar(ind, menMeans, width, color='r', yerr=womenStd)
+p2 = plt.bar(ind, womenMeans, width, color='y',
+ bottom=menMeans, yerr=menStd)
+
+plt.ylabel('Scores')
+plt.title('Scores by group and gender')
+plt.xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') )
+plt.yticks(np.arange(0,81,10))
+plt.legend( (p1[0], p2[0]), ('Men', 'Women') )
+
+plt.show()
Added: trunk/matplotlib/doc/pyplots/boxplot_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/boxplot_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/boxplot_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,145 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 50
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+data = np.concatenate((spread, center, flier_high, flier_low), 0)
+
+# fake up some more data
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 40
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
+data.shape = (-1, 1)
+d2.shape = (-1, 1)
+
+#data = concatenate( (data, d2), 1 )
+# Making a 2-D array only works if all the columns are the
+# same length. If they are not, then use a list instead.
+# This is actually more efficient because boxplot converts
+# a 2-D array into a list of vectors internally anyway.
+data = [data, d2, d2[::2,0]]
+# multiple box plots on one figure
+
+plt.boxplot(data)
+plt.show()
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 50
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+data = np.concatenate((spread, center, flier_high, flier_low), 0)
+
+# fake up some more data
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 40
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
+data.shape = (-1, 1)
+d2.shape = (-1, 1)
+
+#data = concatenate( (data, d2), 1 )
+# Making a 2-D array only works if all the columns are the
+# same length. If they are not, then use a list instead.
+# This is actually more efficient because boxplot converts
+# a 2-D array into a list of vectors internally anyway.
+data = [data, d2, d2[::2,0]]
+# multiple box plots on one figure
+
+plt.boxplot(data)
+plt.show()
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 50
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+data = np.concatenate((spread, center, flier_high, flier_low), 0)
+
+# fake up some more data
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 40
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
+data.shape = (-1, 1)
+d2.shape = (-1, 1)
+
+#data = concatenate( (data, d2), 1 )
+# Making a 2-D array only works if all the columns are the
+# same length. If they are not, then use a list instead.
+# This is actually more efficient because boxplot converts
+# a 2-D array into a list of vectors internally anyway.
+data = [data, d2, d2[::2,0]]
+# multiple box plots on one figure
+
+plt.boxplot(data)
+plt.show()
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 50
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+data = np.concatenate((spread, center, flier_high, flier_low), 0)
+
+# fake up some more data
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 40
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
+data.shape = (-1, 1)
+d2.shape = (-1, 1)
+
+#data = concatenate( (data, d2), 1 )
+# Making a 2-D array only works if all the columns are the
+# same length. If they are not, then use a list instead.
+# This is actually more efficient because boxplot converts
+# a 2-D array into a list of vectors internally anyway.
+data = [data, d2, d2[::2,0]]
+# multiple box plots on one figure
+
+plt.boxplot(data)
+plt.show()
+
+import numpy as np
+import matplotlib.pyplot as plt
+
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 50
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+data = np.concatenate((spread, center, flier_high, flier_low), 0)
+
+# fake up some more data
+spread = np.random.rand(50) * 100
+center = np.ones(25) * 40
+flier_high = np.random.rand(10) * 100 + 100
+flier_low = np.random.rand(10) * -100
+d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
+data.shape = (-1, 1)
+d2.shape = (-1, 1)
+
+#data = concatenate( (data, d2), 1 )
+# Making a 2-D array only works if all the columns are the
+# same length. If they are not, then use a list instead.
+# This is actually more efficient because boxplot converts
+# a 2-D array into a list of vectors internally anyway.
+data = [data, d2, d2[::2,0]]
+# multiple box plots on one figure
+
+plt.boxplot(data)
+plt.show()
+
Added: trunk/matplotlib/doc/pyplots/broken_barh.py
===================================================================
--- trunk/matplotlib/doc/pyplots/broken_barh.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/broken_barh.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,24 @@
+"""
+Make a "broken" horizontal bar plot, ie one with gaps
+"""
+import matplotlib.pyplot as plt
+
+fig = plt.figure()
+ax = fig.add_subplot(111)
+ax.broken_barh([ (110, 30), (150, 10) ] , (10, 9), facecolors='blue')
+ax.broken_barh([ (10, 50), (100, 20), (130, 10)] , (20, 9),
+ facecolors=('red', 'yellow', 'green'))
+ax.set_ylim(5,35)
+ax.set_xlim(0,200)
+ax.set_xlabel('seconds since start')
+ax.set_yticks([15,25])
+ax.set_yticklabels(['Bill', 'Jim'])
+ax.grid(True)
+ax.annotate('race interrupted', (61, 25),
+ xytext=(0.8, 0.9), textcoords='axes fraction',
+ arrowprops=dict(facecolor='black', shrink=0.05),
+ fontsize=16,
+ horizontalalignment='right', verticalalignment='top')
+
+#fig.savefig('broken_barh', dpi=100)
+plt.show()
Added: trunk/matplotlib/doc/pyplots/cohere_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/cohere_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/cohere_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,36 @@
+#!/usr/bin/env python
+"""
+Compute the coherence of two signals
+"""
+import numpy as np
+import matplotlib.pyplot as plt
+
+# make a little extra space between the subplots
+plt.subplots_adjust(wspace=0.5)
+
+dt = 0.01
+t = np.arange(0, 30, dt)
+nse1 = np.random.randn(len(t)) # white noise 1
+nse2 = np.random.randn(len(t)) # white noise 2
+r = np.exp(-t/0.05)
+
+cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
+cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
+
+# two signals with a coherent part and a random part
+s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
+s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
+
+plt.subplot(211)
+plt.plot(t, s1, 'b-', t, s2, 'g-')
+plt.xlim(0,5)
+plt.xlabel('time')
+plt.ylabel('s1 and s2')
+plt.grid(True)
+
+plt.subplot(212)
+cxy, f = plt.cohere(s1, s2, 256, 1./dt)
+plt.ylabel('coherence')
+plt.show()
+
+
Added: trunk/matplotlib/doc/pyplots/contour_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/contour_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/contour_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,330 @@
+#!/usr/bin/env python
+"""
+Illustrate simple contour plotting, contours on an image with
+a colorbar for the contours, and labelled contours.
+
+See also contour_image.py.
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
+
+delta = 0.025
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+# difference of Gaussians
+Z = 10.0 * (Z2 - Z1)
+
+
+# You can use a colormap to specify the colors; the default
+# colormap will be used for the contour lines
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
+
+#Thicken the zero contour.
+zc = CS.collections[6]
+plt.setp(zc, linewidth=4)
+
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
+
+# make a colorbar for the contour lines
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
+
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
+
+# We can still add a colorbar for the image, too.
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
+
+# This makes the original colorbar look a bit out of place,
+# so let's improve its position.
+
+l,b,w,h = plt.gca().get_position().bounds
+ll,bb,ww,hh = CB.ax.get_position().bounds
+CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
+
+
+#savefig('contour_demo')
+plt.show()
+#!/usr/bin/env python
+"""
+Illustrate simple contour plotting, contours on an image with
+a colorbar for the contours, and labelled contours.
+
+See also contour_image.py.
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
+
+delta = 0.025
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+# difference of Gaussians
+Z = 10.0 * (Z2 - Z1)
+
+
+# You can use a colormap to specify the colors; the default
+# colormap will be used for the contour lines
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
+
+#Thicken the zero contour.
+zc = CS.collections[6]
+plt.setp(zc, linewidth=4)
+
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
+
+# make a colorbar for the contour lines
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
+
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
+
+# We can still add a colorbar for the image, too.
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
+
+# This makes the original colorbar look a bit out of place,
+# so let's improve its position.
+
+l,b,w,h = plt.gca().get_position().bounds
+ll,bb,ww,hh = CB.ax.get_position().bounds
+CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
+
+
+#savefig('contour_demo')
+plt.show()
+#!/usr/bin/env python
+"""
+Illustrate simple contour plotting, contours on an image with
+a colorbar for the contours, and labelled contours.
+
+See also contour_image.py.
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
+
+delta = 0.025
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+# difference of Gaussians
+Z = 10.0 * (Z2 - Z1)
+
+
+# You can use a colormap to specify the colors; the default
+# colormap will be used for the contour lines
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
+
+#Thicken the zero contour.
+zc = CS.collections[6]
+plt.setp(zc, linewidth=4)
+
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
+
+# make a colorbar for the contour lines
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
+
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
+
+# We can still add a colorbar for the image, too.
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
+
+# This makes the original colorbar look a bit out of place,
+# so let's improve its position.
+
+l,b,w,h = plt.gca().get_position().bounds
+ll,bb,ww,hh = CB.ax.get_position().bounds
+CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
+
+
+#savefig('contour_demo')
+plt.show()
+#!/usr/bin/env python
+"""
+Illustrate simple contour plotting, contours on an image with
+a colorbar for the contours, and labelled contours.
+
+See also contour_image.py.
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
+
+delta = 0.025
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+# difference of Gaussians
+Z = 10.0 * (Z2 - Z1)
+
+
+# You can use a colormap to specify the colors; the default
+# colormap will be used for the contour lines
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
+
+#Thicken the zero contour.
+zc = CS.collections[6]
+plt.setp(zc, linewidth=4)
+
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
+
+# make a colorbar for the contour lines
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
+
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
+
+# We can still add a colorbar for the image, too.
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
+
+# This makes the original colorbar look a bit out of place,
+# so let's improve its position.
+
+l,b,w,h = plt.gca().get_position().bounds
+ll,bb,ww,hh = CB.ax.get_position().bounds
+CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
+
+
+#savefig('contour_demo')
+plt.show()
+#!/usr/bin/env python
+"""
+Illustrate simple contour plotting, contours on an image with
+a colorbar for the contours, and labelled contours.
+
+See also contour_image.py.
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
+
+delta = 0.025
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+# difference of Gaussians
+Z = 10.0 * (Z2 - Z1)
+
+
+# You can use a colormap to specify the colors; the default
+# colormap will be used for the contour lines
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
+
+#Thicken the zero contour.
+zc = CS.collections[6]
+plt.setp(zc, linewidth=4)
+
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
+
+# make a colorbar for the contour lines
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
+
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
+
+# We can still add a colorbar for the image, too.
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
+
+# This makes the original colorbar look a bit out of place,
+# so let's improve its position.
+
+l,b,w,h = plt.gca().get_position().bounds
+ll,bb,ww,hh = CB.ax.get_position().bounds
+CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
+
+
+#savefig('contour_demo')
+plt.show()
Added: trunk/matplotlib/doc/pyplots/csd_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/csd_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/csd_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,36 @@
+#!/usr/bin/env python
+"""
+Compute the cross spectral density of two signals
+"""
+import numpy as np
+import matplotlib.pyplot as plt
+
+# make a little extra space between the subplots
+plt.subplots_adjust(wspace=0.5)
+
+dt = 0.01
+t = np.arange(0, 30, dt)
+nse1 = np.random.randn(len(t)) # white noise 1
+nse2 = np.random.randn(len(t)) # white noise 2
+r = np.exp(-t/0.05)
+
+cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
+cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
+
+# two signals with a coherent part and a random part
+s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
+s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
+
+plt.subplot(211)
+plt.plot(t, s1, 'b-', t, s2, 'g-')
+plt.xlim(0,5)
+plt.xlabel('time')
+plt.ylabel('s1 and s2')
+plt.grid(True)
+
+plt.subplot(212)
+cxy, f = plt.csd(s1, s2, 256, 1./dt)
+plt.ylabel('CSD (db)')
+plt.show()
+
+
Added: trunk/matplotlib/doc/pyplots/errorbar_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/errorbar_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/errorbar_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,8 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+t = np.arange(0.1, 4, 0.1)
+s = np.exp(-t)
+e, f = 0.1*np.absolute(np.random.randn(2, len(s)))
+plt.errorbar(t, s, e, fmt='o') # vertical symmetric
+plt.show()
Added: trunk/matplotlib/doc/pyplots/figimage_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/figimage_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/figimage_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,21 @@
+"""
+See pcolor_demo2 for a much faster way of generating pcolor plots
+"""
+import numpy as np
+import matplotlib
+import matplotlib.cm as cm
+import matplotlib.pyplot as plt
+
+
+fig = plt.figure(frameon=False)
+Z = np.arange(10000.0)
+Z.shape = 100,100
+Z[:,50:] = 1.
+
+im1 = plt.figimage(Z, xo=50, yo=0, cmap=cm.jet)
+im2 = plt.figimage(Z, xo=100, yo=100, alpha=.8, cmap=cm.jet)
+
+plt.show()
+
+
+
Added: trunk/matplotlib/doc/pyplots/figlegend_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/figlegend_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/figlegend_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,19 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+fig = plt.figure()
+ax1 = fig.add_axes([0.1, 0.1, 0.4, 0.7])
+ax2 = fig.add_axes([0.55, 0.1, 0.4, 0.7])
+
+x = np.arange(0.0, 2.0, 0.02)
+y1 = np.sin(2*np.pi*x)
+y2 = np.exp(-x)
+l1, l2 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
+
+y3 = np.sin(4*np.pi*x)
+y4 = np.exp(-2*x)
+l3, l4 = ax2.plot(x, y3, 'yd-', x, y3, 'k^')
+
+fig.legend((l1, l2), ('Line 1', 'Line 2'), 'upper left')
+fig.legend((l3, l4), ('Line 3', 'Line 4'), 'upper right')
+plt.show()
Added: trunk/matplotlib/doc/pyplots/fill_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/fill_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/fill_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,10 @@
+#!/usr/bin/env python
+import numpy as np
+import matplotlib.pyplot as plt
+
+t = np.arange(0.0, 1.01, 0.01)
+s = np.sin(2*2*np.pi*t)
+
+plt.fill(t, s*np.exp(-5*t), 'r')
+plt.grid(True)
+plt.show()
Added: trunk/matplotlib/doc/pyplots/hexbin_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/hexbin_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/hexbin_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,34 @@
+"""
+hexbin is an axes method or pyplot function that is essentially
+a pcolor of a 2-D histogram with hexagonal cells. It can be
+much more informative than a scatter plot; in the first subplot
+below, try substituting 'scatter' for 'hexbin'.
+"""
+
+import numpy as np
+import matplotlib.pyplot as plt
+n = 100000
+x = np.random.standard_normal(n)
+y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n)
+xmin = x.min()
+xmax = x.max()
+ymin = y.min()
+ymax = y.max()
+
+plt.subplots_adjust(hspace=0.5)
+plt.subplot(121)
+plt.hexbin(x,y)
+plt.axis([xmin, xmax, ymin, ymax])
+plt.title("Hexagon binning")
+cb = plt.colorbar()
+cb.set_label('counts')
+
+plt.subplot(122)
+plt.hexbin(x,y,bins='log')
+plt.axis([xmin, xmax, ymin, ymax])
+plt.title("With a log color scale")
+cb = plt.colorbar()
+cb.set_label('log10(N)')
+
+plt.show()
+
Added: trunk/matplotlib/doc/pyplots/histogram_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/histogram_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/histogram_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,22 @@
+#!/usr/bin/env python
+import numpy as np
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+mu, sigma = 100, 15
+x = mu + sigma*np.random.randn(10000)
+
+# the histogram of the data
+n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
+
+# add a 'best fit' line
+y = mlab.normpdf( bins, mu, sigma)
+l = plt.plot(bins, y, 'r--', linewidth=1)
+
+plt.xlabel('Smarts')
+plt.ylabel('Probability')
+plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
+plt.axis([40, 160, 0, 0.03])
+plt.grid(True)
+
+plt.show()
Added: trunk/matplotlib/doc/pyplots/hline_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/hline_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/hline_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,23 @@
+#!/usr/bin/env python
+import numpy as np
+import matplotlib.pyplot as plt
+
+def f(t):
+ s1 = np.sin(2*np.pi*t)
+ e1 = np.exp(-t)
+ return np.absolute((s1*e1))+.05
+
+
+t = np.arange(0.0, 5.0, 0.1)
+s = f(t)
+nse = np.random.normal(0.0, 0.3, t.shape) * s
+
+
+plt.plot(s+nse, t, 'b^')
+plt.hlines(t, [0], s, lw=2)
+plt.xlabel('time (s)')
+plt.title('Comparison of model with data')
+plt.savefig('test')
+plt.xlim(xmin=0)
+plt.show()
+
Added: trunk/matplotlib/doc/pyplots/image_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/image_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/image_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,18 @@
+#!/usr/bin/env python
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
+
+delta = 0.025
+x = y = np.arange(-3.0, 3.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+Z = Z2-Z1 # difference of Gaussians
+
+im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
+ origin='lower', extent=[-3,3,-3,3])
+
+plt.show()
+
Added: trunk/matplotlib/doc/pyplots/log_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/log_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/log_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,25 @@
+import numpy as np
+import matplotlib.pyplot as plt
+
+plt.subplots_adjust(hspace=0.4)
+t = np.arange(0.01, 20.0, 0.01)
+
+# log y axis
+plt.subplot(311)
+plt.semilogy(t, np.exp(-t/5.0))
+plt.ylabel('semilogy')
+plt.grid(True)
+
+# log x axis
+plt.subplot(312)
+plt.semilogx(t, np.sin(2*np.pi*t))
+plt.ylabel('semilogx')
+plt.grid(True)
+
+# log x and y axis
+plt.subplot(313)
+plt.loglog(t, 20*np.exp(-t/10.0), basex=4)
+plt.grid(True)
+plt.ylabel('loglog base 4 on x')
+
+plt.show()
Added: trunk/matplotlib/doc/pyplots/xcorr_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/xcorr_demo.py	 (rev 0)
+++ trunk/matplotlib/doc/pyplots/xcorr_demo.py	2008年06月27日 15:34:32 UTC (rev 5690)
@@ -0,0 +1,17 @@
+import matplotlib.pyplot as plt
+import numpy as np
+
+x,y = np.random.randn(2,100)
+fig = plt.figure()
+ax1 = fig.add_subplot(211)
+ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
+ax1.grid(True)
+ax1.axhline(0, color='black', lw=2)
+
+ax2 = fig.add_subplot(212, sharex=ax1)
+ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
+ax2.grid(True)
+ax2.axhline(0, color='black', lw=2)
+
+plt.show()
+
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:42:47
Revision: 5693
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5693&view=rev
Author: jdh2358
Date: 2008年06月27日 08:42:44 -0700 (2008年6月27日)
Log Message:
-----------
cleaned up some pyplots examples that got funkily duplicated
Modified Paths:
--------------
 trunk/matplotlib/doc/pyplots/boxplot_demo.py
 trunk/matplotlib/doc/pyplots/contour_demo.py
Modified: trunk/matplotlib/doc/pyplots/boxplot_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/boxplot_demo.py	2008年06月27日 15:40:06 UTC (rev 5692)
+++ trunk/matplotlib/doc/pyplots/boxplot_demo.py	2008年06月27日 15:42:44 UTC (rev 5693)
@@ -27,119 +27,3 @@
 plt.boxplot(data)
 plt.show()
 
-import numpy as np
-import matplotlib.pyplot as plt
-
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 50
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-data = np.concatenate((spread, center, flier_high, flier_low), 0)
-
-# fake up some more data
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 40
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
-data.shape = (-1, 1)
-d2.shape = (-1, 1)
-
-#data = concatenate( (data, d2), 1 )
-# Making a 2-D array only works if all the columns are the
-# same length. If they are not, then use a list instead.
-# This is actually more efficient because boxplot converts
-# a 2-D array into a list of vectors internally anyway.
-data = [data, d2, d2[::2,0]]
-# multiple box plots on one figure
-
-plt.boxplot(data)
-plt.show()
-
-import numpy as np
-import matplotlib.pyplot as plt
-
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 50
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-data = np.concatenate((spread, center, flier_high, flier_low), 0)
-
-# fake up some more data
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 40
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
-data.shape = (-1, 1)
-d2.shape = (-1, 1)
-
-#data = concatenate( (data, d2), 1 )
-# Making a 2-D array only works if all the columns are the
-# same length. If they are not, then use a list instead.
-# This is actually more efficient because boxplot converts
-# a 2-D array into a list of vectors internally anyway.
-data = [data, d2, d2[::2,0]]
-# multiple box plots on one figure
-
-plt.boxplot(data)
-plt.show()
-
-import numpy as np
-import matplotlib.pyplot as plt
-
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 50
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-data = np.concatenate((spread, center, flier_high, flier_low), 0)
-
-# fake up some more data
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 40
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
-data.shape = (-1, 1)
-d2.shape = (-1, 1)
-
-#data = concatenate( (data, d2), 1 )
-# Making a 2-D array only works if all the columns are the
-# same length. If they are not, then use a list instead.
-# This is actually more efficient because boxplot converts
-# a 2-D array into a list of vectors internally anyway.
-data = [data, d2, d2[::2,0]]
-# multiple box plots on one figure
-
-plt.boxplot(data)
-plt.show()
-
-import numpy as np
-import matplotlib.pyplot as plt
-
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 50
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-data = np.concatenate((spread, center, flier_high, flier_low), 0)
-
-# fake up some more data
-spread = np.random.rand(50) * 100
-center = np.ones(25) * 40
-flier_high = np.random.rand(10) * 100 + 100
-flier_low = np.random.rand(10) * -100
-d2 = np.concatenate( (spread, center, flier_high, flier_low), 0 )
-data.shape = (-1, 1)
-d2.shape = (-1, 1)
-
-#data = concatenate( (data, d2), 1 )
-# Making a 2-D array only works if all the columns are the
-# same length. If they are not, then use a list instead.
-# This is actually more efficient because boxplot converts
-# a 2-D array into a list of vectors internally anyway.
-data = [data, d2, d2[::2,0]]
-# multiple box plots on one figure
-
-plt.boxplot(data)
-plt.show()
-
Modified: trunk/matplotlib/doc/pyplots/contour_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/contour_demo.py	2008年06月27日 15:40:06 UTC (rev 5692)
+++ trunk/matplotlib/doc/pyplots/contour_demo.py	2008年06月27日 15:42:44 UTC (rev 5693)
@@ -64,267 +64,3 @@
 
 #savefig('contour_demo')
 plt.show()
-#!/usr/bin/env python
-"""
-Illustrate simple contour plotting, contours on an image with
-a colorbar for the contours, and labelled contours.
-
-See also contour_image.py.
-"""
-import matplotlib
-import numpy as np
-import matplotlib.cm as cm
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-matplotlib.rcParams['xtick.direction'] = 'out'
-matplotlib.rcParams['ytick.direction'] = 'out'
-
-delta = 0.025
-x = np.arange(-3.0, 3.0, delta)
-y = np.arange(-2.0, 2.0, delta)
-X, Y = np.meshgrid(x, y)
-Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
-# difference of Gaussians
-Z = 10.0 * (Z2 - Z1)
-
-
-# You can use a colormap to specify the colors; the default
-# colormap will be used for the contour lines
-plt.figure()
-im = plt.imshow(Z, interpolation='bilinear', origin='lower',
- cmap=cm.gray, extent=(-3,3,-2,2))
-levels = np.arange(-1.2, 1.6, 0.2)
-CS = plt.contour(Z, levels,
- origin='lower',
- linewidths=2,
- extent=(-3,3,-2,2))
-
-#Thicken the zero contour.
-zc = CS.collections[6]
-plt.setp(zc, linewidth=4)
-
-plt.clabel(CS, levels[1::2], # label every second level
- inline=1,
- fmt='%1.1f',
- fontsize=14)
-
-# make a colorbar for the contour lines
-CB = plt.colorbar(CS, shrink=0.8, extend='both')
-
-plt.title('Lines with colorbar')
-#plt.hot() # Now change the colormap for the contour lines and colorbar
-plt.flag()
-
-# We can still add a colorbar for the image, too.
-CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
-
-# This makes the original colorbar look a bit out of place,
-# so let's improve its position.
-
-l,b,w,h = plt.gca().get_position().bounds
-ll,bb,ww,hh = CB.ax.get_position().bounds
-CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
-
-
-#savefig('contour_demo')
-plt.show()
-#!/usr/bin/env python
-"""
-Illustrate simple contour plotting, contours on an image with
-a colorbar for the contours, and labelled contours.
-
-See also contour_image.py.
-"""
-import matplotlib
-import numpy as np
-import matplotlib.cm as cm
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-matplotlib.rcParams['xtick.direction'] = 'out'
-matplotlib.rcParams['ytick.direction'] = 'out'
-
-delta = 0.025
-x = np.arange(-3.0, 3.0, delta)
-y = np.arange(-2.0, 2.0, delta)
-X, Y = np.meshgrid(x, y)
-Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
-# difference of Gaussians
-Z = 10.0 * (Z2 - Z1)
-
-
-# You can use a colormap to specify the colors; the default
-# colormap will be used for the contour lines
-plt.figure()
-im = plt.imshow(Z, interpolation='bilinear', origin='lower',
- cmap=cm.gray, extent=(-3,3,-2,2))
-levels = np.arange(-1.2, 1.6, 0.2)
-CS = plt.contour(Z, levels,
- origin='lower',
- linewidths=2,
- extent=(-3,3,-2,2))
-
-#Thicken the zero contour.
-zc = CS.collections[6]
-plt.setp(zc, linewidth=4)
-
-plt.clabel(CS, levels[1::2], # label every second level
- inline=1,
- fmt='%1.1f',
- fontsize=14)
-
-# make a colorbar for the contour lines
-CB = plt.colorbar(CS, shrink=0.8, extend='both')
-
-plt.title('Lines with colorbar')
-#plt.hot() # Now change the colormap for the contour lines and colorbar
-plt.flag()
-
-# We can still add a colorbar for the image, too.
-CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
-
-# This makes the original colorbar look a bit out of place,
-# so let's improve its position.
-
-l,b,w,h = plt.gca().get_position().bounds
-ll,bb,ww,hh = CB.ax.get_position().bounds
-CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
-
-
-#savefig('contour_demo')
-plt.show()
-#!/usr/bin/env python
-"""
-Illustrate simple contour plotting, contours on an image with
-a colorbar for the contours, and labelled contours.
-
-See also contour_image.py.
-"""
-import matplotlib
-import numpy as np
-import matplotlib.cm as cm
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-matplotlib.rcParams['xtick.direction'] = 'out'
-matplotlib.rcParams['ytick.direction'] = 'out'
-
-delta = 0.025
-x = np.arange(-3.0, 3.0, delta)
-y = np.arange(-2.0, 2.0, delta)
-X, Y = np.meshgrid(x, y)
-Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
-# difference of Gaussians
-Z = 10.0 * (Z2 - Z1)
-
-
-# You can use a colormap to specify the colors; the default
-# colormap will be used for the contour lines
-plt.figure()
-im = plt.imshow(Z, interpolation='bilinear', origin='lower',
- cmap=cm.gray, extent=(-3,3,-2,2))
-levels = np.arange(-1.2, 1.6, 0.2)
-CS = plt.contour(Z, levels,
- origin='lower',
- linewidths=2,
- extent=(-3,3,-2,2))
-
-#Thicken the zero contour.
-zc = CS.collections[6]
-plt.setp(zc, linewidth=4)
-
-plt.clabel(CS, levels[1::2], # label every second level
- inline=1,
- fmt='%1.1f',
- fontsize=14)
-
-# make a colorbar for the contour lines
-CB = plt.colorbar(CS, shrink=0.8, extend='both')
-
-plt.title('Lines with colorbar')
-#plt.hot() # Now change the colormap for the contour lines and colorbar
-plt.flag()
-
-# We can still add a colorbar for the image, too.
-CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
-
-# This makes the original colorbar look a bit out of place,
-# so let's improve its position.
-
-l,b,w,h = plt.gca().get_position().bounds
-ll,bb,ww,hh = CB.ax.get_position().bounds
-CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
-
-
-#savefig('contour_demo')
-plt.show()
-#!/usr/bin/env python
-"""
-Illustrate simple contour plotting, contours on an image with
-a colorbar for the contours, and labelled contours.
-
-See also contour_image.py.
-"""
-import matplotlib
-import numpy as np
-import matplotlib.cm as cm
-import matplotlib.mlab as mlab
-import matplotlib.pyplot as plt
-
-matplotlib.rcParams['xtick.direction'] = 'out'
-matplotlib.rcParams['ytick.direction'] = 'out'
-
-delta = 0.025
-x = np.arange(-3.0, 3.0, delta)
-y = np.arange(-2.0, 2.0, delta)
-X, Y = np.meshgrid(x, y)
-Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
-# difference of Gaussians
-Z = 10.0 * (Z2 - Z1)
-
-
-# You can use a colormap to specify the colors; the default
-# colormap will be used for the contour lines
-plt.figure()
-im = plt.imshow(Z, interpolation='bilinear', origin='lower',
- cmap=cm.gray, extent=(-3,3,-2,2))
-levels = np.arange(-1.2, 1.6, 0.2)
-CS = plt.contour(Z, levels,
- origin='lower',
- linewidths=2,
- extent=(-3,3,-2,2))
-
-#Thicken the zero contour.
-zc = CS.collections[6]
-plt.setp(zc, linewidth=4)
-
-plt.clabel(CS, levels[1::2], # label every second level
- inline=1,
- fmt='%1.1f',
- fontsize=14)
-
-# make a colorbar for the contour lines
-CB = plt.colorbar(CS, shrink=0.8, extend='both')
-
-plt.title('Lines with colorbar')
-#plt.hot() # Now change the colormap for the contour lines and colorbar
-plt.flag()
-
-# We can still add a colorbar for the image, too.
-CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
-
-# This makes the original colorbar look a bit out of place,
-# so let's improve its position.
-
-l,b,w,h = plt.gca().get_position().bounds
-ll,bb,ww,hh = CB.ax.get_position().bounds
-CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
-
-
-#savefig('contour_demo')
-plt.show()
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:42:23
Revision: 5692
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5692&view=rev
Author: jdh2358
Date: 2008年06月27日 08:40:06 -0700 (2008年6月27日)
Log Message:
-----------
removing the copied files I accidentally added (sigh). It is confusing to put autogenerated files next to legit files in pyplot...
Removed Paths:
-------------
 trunk/matplotlib/doc/pyplots/hline_demo.py
Deleted: trunk/matplotlib/doc/pyplots/hline_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/hline_demo.py	2008年06月27日 15:39:28 UTC (rev 5691)
+++ trunk/matplotlib/doc/pyplots/hline_demo.py	2008年06月27日 15:40:06 UTC (rev 5692)
@@ -1,23 +0,0 @@
-#!/usr/bin/env python
-import numpy as np
-import matplotlib.pyplot as plt
-
-def f(t):
- s1 = np.sin(2*np.pi*t)
- e1 = np.exp(-t)
- return np.absolute((s1*e1))+.05
-
-
-t = np.arange(0.0, 5.0, 0.1)
-s = f(t)
-nse = np.random.normal(0.0, 0.3, t.shape) * s
-
-
-plt.plot(s+nse, t, 'b^')
-plt.hlines(t, [0], s, lw=2)
-plt.xlabel('time (s)')
-plt.title('Comparison of model with data')
-plt.savefig('test')
-plt.xlim(xmin=0)
-plt.show()
-
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月27日 15:26:05
Revision: 5688
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5688&view=rev
Author: jdh2358
Date: 2008年06月27日 08:25:50 -0700 (2008年6月27日)
Log Message:
-----------
more doc examples and cleanups
Modified Paths:
--------------
 trunk/matplotlib/examples/pylab_examples/axhspan_demo.py
 trunk/matplotlib/examples/pylab_examples/barchart_demo.py
 trunk/matplotlib/examples/pylab_examples/contour_demo.py
 trunk/matplotlib/examples/pylab_examples/figimage_demo.py
 trunk/matplotlib/examples/pylab_examples/figlegend_demo.py
 trunk/matplotlib/examples/pylab_examples/log_demo.py
 trunk/matplotlib/lib/matplotlib/axes.py
 trunk/matplotlib/lib/matplotlib/contour.py
 trunk/matplotlib/lib/matplotlib/figure.py
Modified: trunk/matplotlib/examples/pylab_examples/axhspan_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/axhspan_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/axhspan_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,40 +1,32 @@
-#!/usr/bin/env python
+import numpy as np
+import matplotlib.pyplot as plt
 
-from pylab import *
-figure(1)
-plot(10*rand(12), 'o')
-xlim(0,15)
-xticks([2, 4, 8, 12], ('John', 'Hunter', 'Was', 'Here'))
+t = np.arange(-1,2, .01)
+s = np.sin(2*np.pi*t)
 
-ylim(-1,10)
-yticks(range(8))
-
-figure(2)
-t = arange(-1,2, .01)
-s = sin(2*pi*t)
-plot(t,s)
+plt.plot(t,s)
 # draw a thick red hline at y=0 that spans the xrange
-l = axhline(linewidth=4, color='r')
+l = plt.axhline(linewidth=4, color='r')
 
 # draw a default hline at y=1 that spans the xrange
-l = axhline(y=1)
+l = plt.axhline(y=1)
 
 # draw a default vline at x=1 that spans the xrange
-l = axvline(x=1)
+l = plt.axvline(x=1)
 
 # draw a thick blue vline at x=0 that spans the the upper quadrant of
 # the yrange
-l = axvline(x=0, ymin=0.75, linewidth=4, color='b')
+l = plt.axvline(x=0, ymin=0.75, linewidth=4, color='b')
 
 # draw a default hline at y=.5 that spans the the middle half of
 # the axes
-l = axhline(y=.5, xmin=0.25, xmax=0.75)
+l = plt.axhline(y=.5, xmin=0.25, xmax=0.75)
 
-p = axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
+p = plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)
 
-p = axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
+p = plt.axvspan(1.25, 1.55, facecolor='g', alpha=0.5)
 
-axis([-1,2,-1,2])
+plt.axis([-1,2,-1,2])
 
 
-show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/barchart_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/barchart_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/barchart_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,39 +1,38 @@
 
 #!/usr/bin/env python
-# a bar plot with errorbars
-from numpy import arange
-from matplotlib.pyplot import *
+import numpy as np
+import matplotlib.pyplot as plt
 
 N = 5
 menMeans = (20, 35, 30, 35, 27)
 menStd = (2, 3, 4, 1, 2)
 
-ind = arange(N) # the x locations for the groups
+ind = np.arange(N) # the x locations for the groups
 width = 0.35 # the width of the bars
 
-figure()
-subplot(111)
-rects1 = bar(ind, menMeans, width, color='r', yerr=menStd)
 
+plt.subplot(111)
+rects1 = plt.bar(ind, menMeans, width, color='r', yerr=menStd)
+
 womenMeans = (25, 32, 34, 20, 25)
 womenStd = (3, 5, 2, 3, 3)
-rects2 = bar(ind+width, womenMeans, width, color='y', yerr=womenStd)
+rects2 = plt.bar(ind+width, womenMeans, width, color='y', yerr=womenStd)
 
 # add some
-ylabel('Scores')
-title('Scores by group and gender')
-xticks(ind+width, ('G1', 'G2', 'G3', 'G4', 'G5') )
+plt.ylabel('Scores')
+plt.title('Scores by group and gender')
+plt.xticks(ind+width, ('G1', 'G2', 'G3', 'G4', 'G5') )
 
-legend( (rects1[0], rects2[0]), ('Men', 'Women') )
+plt.legend( (rects1[0], rects2[0]), ('Men', 'Women') )
 
 def autolabel(rects):
 # attach some text labels
 for rect in rects:
 height = rect.get_height()
- text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height),
+ plt.text(rect.get_x()+rect.get_width()/2., 1.05*height, '%d'%int(height),
 ha='center', va='bottom')
 
 autolabel(rects1)
 autolabel(rects2)
 #savefig('barchart_demo')
-show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/contour_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/contour_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/contour_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,21 +1,25 @@
 #!/usr/bin/env python
-'''
+"""
 Illustrate simple contour plotting, contours on an image with
 a colorbar for the contours, and labelled contours.
 
 See also contour_image.py.
-'''
-from pylab import *
+"""
+import matplotlib
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
 
-rcParams['xtick.direction'] = 'out'
-rcParams['ytick.direction'] = 'out'
+matplotlib.rcParams['xtick.direction'] = 'out'
+matplotlib.rcParams['ytick.direction'] = 'out'
 
 delta = 0.025
-x = arange(-3.0, 3.0, delta)
-y = arange(-2.0, 2.0, delta)
-X, Y = meshgrid(x, y)
-Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+x = np.arange(-3.0, 3.0, delta)
+y = np.arange(-2.0, 2.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
 # difference of Gaussians
 Z = 10.0 * (Z2 - Z1)
 
@@ -25,77 +29,77 @@
 # inline argument to clabel will control whether the labels are draw
 # over the line segments of the contour, removing the lines beneath
 # the label
-figure()
-CS = contour(X, Y, Z)
-clabel(CS, inline=1, fontsize=10)
-title('Simplest default with labels')
+plt.figure()
+CS = plt.contour(X, Y, Z)
+plt.clabel(CS, inline=1, fontsize=10)
+plt.title('Simplest default with labels')
 
 
 # You can force all the contours to be the same color.
-figure()
-CS = contour(X, Y, Z, 6,
- colors='k', # negative contours will be dashed by default
- )
-clabel(CS, fontsize=9, inline=1)
-title('Single color - negative contours dashed')
+plt.figure()
+CS = plt.contour(X, Y, Z, 6,
+ colors='k', # negative contours will be dashed by default
+ )
+plt.clabel(CS, fontsize=9, inline=1)
+plt.title('Single color - negative contours dashed')
 
 # You can set negative contours to be solid instead of dashed:
-rcParams['contour.negative_linestyle'] = 'solid'
-figure()
-CS = contour(X, Y, Z, 6,
- colors='k', # negative contours will be dashed by default
- )
-clabel(CS, fontsize=9, inline=1)
-title('Single color - negative contours solid')
+matplotlib.rcParams['contour.negative_linestyle'] = 'solid'
+plt.figure()
+CS = plt.contour(X, Y, Z, 6,
+ colors='k', # negative contours will be dashed by default
+ )
+plt.clabel(CS, fontsize=9, inline=1)
+plt.title('Single color - negative contours solid')
 
 
 # And you can manually specify the colors of the contour
-figure()
-CS = contour(X, Y, Z, 6,
- linewidths=arange(.5, 4, .5),
- colors=('r', 'green', 'blue', (1,1,0), '#afeeee', '0.5')
- )
-clabel(CS, fontsize=9, inline=1)
-title('Crazy lines')
+plt.figure()
+CS = plt.contour(X, Y, Z, 6,
+ linewidths=np.arange(.5, 4, .5),
+ colors=('r', 'green', 'blue', (1,1,0), '#afeeee', '0.5')
+ )
+plt.clabel(CS, fontsize=9, inline=1)
+plt.title('Crazy lines')
 
 
 # Or you can use a colormap to specify the colors; the default
 # colormap will be used for the contour lines
-figure()
-im = imshow(Z, interpolation='bilinear', origin='lower',
- cmap=cm.gray, extent=(-3,3,-2,2))
-levels = arange(-1.2, 1.6, 0.2)
-CS = contour(Z, levels,
- origin='lower',
- linewidths=2,
- extent=(-3,3,-2,2))
+plt.figure()
+im = plt.imshow(Z, interpolation='bilinear', origin='lower',
+ cmap=cm.gray, extent=(-3,3,-2,2))
+levels = np.arange(-1.2, 1.6, 0.2)
+CS = plt.contour(Z, levels,
+ origin='lower',
+ linewidths=2,
+ extent=(-3,3,-2,2))
 
 #Thicken the zero contour.
 zc = CS.collections[6]
-setp(zc, linewidth=4)
+plt.setp(zc, linewidth=4)
 
-clabel(CS, levels[1::2], # label every second level
- inline=1,
- fmt='%1.1f',
- fontsize=14)
+plt.clabel(CS, levels[1::2], # label every second level
+ inline=1,
+ fmt='%1.1f',
+ fontsize=14)
 
 # make a colorbar for the contour lines
-CB = colorbar(CS, shrink=0.8, extend='both')
+CB = plt.colorbar(CS, shrink=0.8, extend='both')
 
-title('Lines with colorbar')
-hot() # Now change the colormap for the contour lines and colorbar
-flag()
+plt.title('Lines with colorbar')
+#plt.hot() # Now change the colormap for the contour lines and colorbar
+plt.flag()
 
 # We can still add a colorbar for the image, too.
-CBI = colorbar(im, orientation='horizontal', shrink=0.8)
+CBI = plt.colorbar(im, orientation='horizontal', shrink=0.8)
 
 # This makes the original colorbar look a bit out of place,
 # so let's improve its position.
 
-l,b,w,h = gca().get_position().bounds
+l,b,w,h = plt.gca().get_position().bounds
 ll,bb,ww,hh = CB.ax.get_position().bounds
 CB.ax.set_position([ll, b+0.1*h, ww, h*0.8])
 
 
 #savefig('contour_demo')
-show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/figimage_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/figimage_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/figimage_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,21 +1,21 @@
-#!/usr/bin/env python
 """
 See pcolor_demo2 for a much faster way of generating pcolor plots
 """
-from __future__ import division
-from pylab import *
-rc('axes', hold=True)
-rc('image', origin='upper')
-figure(1, frameon=False)
-Z = arange(10000.0); Z.shape = 100,100
-Z[:,50:] = 1
-jet() # sets the default
-im1 = figimage(Z, xo=50, yo=0)
-im2 = figimage(Z, xo=100, yo=100, alpha=.8)
-#gray() # overrides current and sets default
-#savefig('figimage_demo')
+import numpy as np
+import matplotlib
+import matplotlib.cm as cm
+import matplotlib.pyplot as plt
 
-show()
 
+fig = plt.figure(frameon=False)
+Z = np.arange(10000.0)
+Z.shape = 100,100
+Z[:,50:] = 1.
 
+im1 = plt.figimage(Z, xo=50, yo=0, cmap=cm.jet)
+im2 = plt.figimage(Z, xo=100, yo=100, alpha=.8, cmap=cm.jet)
 
+plt.show()
+
+
+
Modified: trunk/matplotlib/examples/pylab_examples/figlegend_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/figlegend_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/figlegend_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,18 +1,19 @@
-#!/usr/bin/env python
+import numpy as np
+import matplotlib.pyplot as plt
 
-from pylab import *
-ax1 = axes([0.1, 0.1, 0.4, 0.7])
-ax2 = axes([0.55, 0.1, 0.4, 0.7])
+fig = plt.figure()
+ax1 = fig.add_axes([0.1, 0.1, 0.4, 0.7])
+ax2 = fig.add_axes([0.55, 0.1, 0.4, 0.7])
 
-x = arange(0.0, 2.0, 0.02)
-y1 = sin(2*pi*x)
-y2 = exp(-x)
+x = np.arange(0.0, 2.0, 0.02)
+y1 = np.sin(2*np.pi*x)
+y2 = np.exp(-x)
 l1, l2 = ax1.plot(x, y1, 'rs-', x, y2, 'go')
 
-y3 = sin(4*pi*x)
-y4 = exp(-2*x)
+y3 = np.sin(4*np.pi*x)
+y4 = np.exp(-2*x)
 l3, l4 = ax2.plot(x, y3, 'yd-', x, y3, 'k^')
 
-figlegend((l1, l2), ('Line 1', 'Line 2'), 'upper left')
-figlegend((l3, l4), ('Line 3', 'Line 4'), 'upper right')
-show()
+fig.legend((l1, l2), ('Line 1', 'Line 2'), 'upper left')
+fig.legend((l3, l4), ('Line 3', 'Line 4'), 'upper right')
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/log_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/log_demo.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/examples/pylab_examples/log_demo.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -1,26 +1,25 @@
-#!/usr/bin/env python
-from pylab import *
+import numpy as np
+import matplotlib.pyplot as plt
 
-dt = 0.01
-t = arange(dt, 20.0, dt)
+plt.subplots_adjust(hspace=0.4)
+t = np.arange(0.01, 20.0, 0.01)
 
-subplot(311)
-semilogy(t, exp(-t/5.0))
-ylabel('semilogy')
-grid(True)
+# log y axis
+plt.subplot(311)
+plt.semilogy(t, np.exp(-t/5.0))
+plt.ylabel('semilogy')
+plt.grid(True)
 
-subplot(312)
-semilogx(t, sin(2*pi*t))
-ylabel('semilogx')
+# log x axis
+plt.subplot(312)
+plt.semilogx(t, np.sin(2*np.pi*t))
+plt.ylabel('semilogx')
+plt.grid(True)
 
+# log x and y axis
+plt.subplot(313)
+plt.loglog(t, 20*np.exp(-t/10.0), basex=4)
+plt.grid(True)
+plt.ylabel('loglog base 4 on x')
 
-
-grid(True)
-gca().xaxis.grid(True, which='minor') # minor grid on too
-
-subplot(313)
-loglog(t, 20*exp(-t/10.0), basex=4)
-grid(True)
-ylabel('loglog base 4 on x')
-savefig('log_demo')
-show()
+plt.show()
Modified: trunk/matplotlib/lib/matplotlib/axes.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/axes.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/lib/matplotlib/axes.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -2697,6 +2697,8 @@
 Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
 
 %(Line2D)s
+
+ See :meth:`axhspan` for example plot and source code
 """
 
 ymin, ymax = self.get_ylim()
@@ -2747,6 +2749,8 @@
 Valid kwargs are :class:`~matplotlib.lines.Line2D` properties:
 
 %(Line2D)s
+
+ See :meth:`axhspan` for example plot and source code
 """
 
 xmin, xmax = self.get_xlim()
@@ -2793,6 +2797,11 @@
 Valid kwargs are :class:`~matplotlib.patches.Polygon` properties:
 
 %(Polygon)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/axhspan_demo.py
+
 """
 # convert y axis units
 trans = mtransforms.blended_transform_factory(
@@ -2836,6 +2845,8 @@
 properties:
 
 %(Polygon)s
+
+ See :meth:`axhspan` for example plot and source code
 """
 # convert x axis units
 trans = mtransforms.blended_transform_factory(
@@ -3214,6 +3225,11 @@
 :class:`~matplotlib.lines.Line2D` properties:
 
 %(Line2D)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/log_demo.py
+
 """
 if not self._hold: self.cla()
 
@@ -3262,6 +3278,8 @@
 :class:`~matplotlib.lines.Line2D` properties:
 
 %(Line2D)s
+
+ See :meth:`loglog` for example code and figure
 """
 if not self._hold: self.cla()
 d = {'basex': kwargs.pop( 'basex', 10),
@@ -3303,6 +3321,8 @@
 :class:`~matplotlib.lines.Line2D` properties:
 
 %(Line2D)s
+
+ See :meth:`loglog` for example code and figure
 """
 if not self._hold: self.cla()
 d = {'basey': kwargs.pop('basey', 10),
@@ -3371,6 +3391,8 @@
 :func:`~matplotlib.pyplot.xcorr` above, and
 :func:`~matplotlib.pyplot.acorr` below.
 
+ **Example:**
+
 .. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
 """
 return self.xcorr(x, x, **kwargs)
@@ -3426,6 +3448,8 @@
 :func:`~matplotlib.pyplot.xcorr` above, and
 :func:`~matplotlib.pyplot.acorr` below.
 
+ **Example:**
+
 .. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
 """
 
@@ -3565,6 +3589,10 @@
 *axespad*: [ None | scalar ]
 The border between the axes and legend edge. If *None*, use rc
 settings.
+
+ **Example:**
+
+ .. plot:: legend_demo.py
 """
 
 def get_handles():
@@ -3724,10 +3752,8 @@
 
 %(Rectangle)s
 
- **Example:**
+ **Example:** A stacked bar chart.
 
- A stacked bar chart.
-
 .. plot:: ../mpl_examples/pylab_examples/bar_stacked.py
 """
 if not self._hold: self.cla()
@@ -4295,6 +4321,11 @@
 the third element is a list of
 :class:`~matplotlib.collections.LineCollection` instances for
 the horizontal and vertical error ranges.
+
+ **Example:**
+
+ .. plot:: errorbar_demo.py
+
 """
 
 self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs)
@@ -4496,6 +4527,9 @@
 Returns a list of the :class:`matplotlib.lines.Line2D`
 instances added.
 
+ **Example:**
+
+ .. plot:: boxplot_demo.py
 """
 if not self._hold: self.cla()
 holdStatus = self._hold
Modified: trunk/matplotlib/lib/matplotlib/contour.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/contour.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/lib/matplotlib/contour.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -69,6 +69,7 @@
 *fmt*:
 a format string for the label. Default is '%1.3f'
 
+
 """
 fontsize = kwargs.get('fontsize', None)
 inline = kwargs.get('inline', 1)
@@ -892,4 +893,5 @@
 be removed. Chunking introduces artifacts at the chunk boundaries
 unless *antialiased* is *False*.
 
+ .. plot:: contour_demo.py
 """
Modified: trunk/matplotlib/lib/matplotlib/figure.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/figure.py	2008年06月27日 13:33:33 UTC (rev 5687)
+++ trunk/matplotlib/lib/matplotlib/figure.py	2008年06月27日 15:25:50 UTC (rev 5688)
@@ -468,6 +468,9 @@
 :class:`~matplotlib.axes.Axes` with size [0,1,0,1].
 
 An :class:`matplotlib.image.FigureImage` instance is returned.
+
+ .. plot:: ../mpl_examples/pylab_examples/figimage_demo.py
+
 """
 
 if not self._hold: self.clf()
@@ -912,6 +915,7 @@
 *axespad*
 the border between the axes and legend edge
 
+ .. plot:: ../mpl_examples/pylab_examples/figlegend_demo.py
 """
 handles = flatten(handles)
 l = Legend(self, handles, labels, *args, **kwargs)
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 13:33:50
Revision: 5687
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5687&view=rev
Author: mdboom
Date: 2008年06月27日 06:33:33 -0700 (2008年6月27日)
Log Message:
-----------
Add information about numpy copies. Add suggested replacement for offset_copy().
Modified Paths:
--------------
 trunk/matplotlib/API_CHANGES
Modified: trunk/matplotlib/API_CHANGES
===================================================================
--- trunk/matplotlib/API_CHANGES	2008年06月27日 13:31:53 UTC (rev 5686)
+++ trunk/matplotlib/API_CHANGES	2008年06月27日 13:33:33 UTC (rev 5687)
@@ -55,6 +55,11 @@
 See transforms.py for a description of the design of the new
 transformation framework.
 
+ For efficiency, many of these functions return views into Numpy
+ arrays. This means that if you hold on to a reference to them,
+ their contents may change. If you want to store a snapshot of
+ their current values, use the Numpy array method copy().
+
 The view intervals are now stored only in one place -- in the Axes
 instance, not in the formatter instances as well. This means
 formatters must get their limits from their Axis, which in turn
@@ -122,6 +127,8 @@
 
 Transform.inverse_xy_tup(points)		Transform.inverted().transform(points)
 
+ offset_copy(trans, x, y) trans + Affine2D().translate(x, y)
+
 axes.py
 Axes.get_position()			Axes.get_position()
 [Axes.get_position() used to return a list of points, not it
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 13:32:03
Revision: 5686
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5686&view=rev
Author: mdboom
Date: 2008年06月27日 06:31:53 -0700 (2008年6月27日)
Log Message:
-----------
Minor docstring typo (thanks, Chris Walker)
Modified Paths:
--------------
 trunk/matplotlib/lib/matplotlib/afm.py
Modified: trunk/matplotlib/lib/matplotlib/afm.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/afm.py	2008年06月27日 12:51:50 UTC (rev 5685)
+++ trunk/matplotlib/lib/matplotlib/afm.py	2008年06月27日 13:31:53 UTC (rev 5686)
@@ -4,7 +4,7 @@
 than mine) I decided not to go with them because either they were
 either
 
- 1) copyighted or used a non-BSD compatible license
+ 1) copyrighted or used a non-BSD compatible license
 
 2) had too many dependencies and I wanted a free standing lib
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 12:51:51
Revision: 5685
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5685&view=rev
Author: mdboom
Date: 2008年06月27日 05:51:50 -0700 (2008年6月27日)
Log Message:
-----------
Merged revisions 5678-5684 via svnmerge from 
https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_91_maint
........
r5684 | mdboom | 2008年06月27日 08:49:34 -0400 (2008年6月27日) | 2 lines
Fix mathtext parsing bug.
........
Modified Paths:
--------------
 trunk/matplotlib/CHANGELOG
 trunk/matplotlib/lib/matplotlib/mathtext.py
Property Changed:
----------------
 trunk/matplotlib/
Property changes on: trunk/matplotlib
___________________________________________________________________
Name: svnmerge-integrated
 - /branches/v0_91_maint:1-5677
 + /branches/v0_91_maint:1-5684
Modified: trunk/matplotlib/CHANGELOG
===================================================================
--- trunk/matplotlib/CHANGELOG	2008年06月27日 12:49:34 UTC (rev 5684)
+++ trunk/matplotlib/CHANGELOG	2008年06月27日 12:51:50 UTC (rev 5685)
@@ -1,3 +1,5 @@
+2008年06月26日 Fix mathtext bug for expressions like $x_{\leftarrow}$ - MGD
+
 2008年06月26日 Fix direction of horizontal/vertical hatches - MGD
 
 2008年06月25日 Figure.figurePatch renamed Figure.patch, Axes.axesPatch
Modified: trunk/matplotlib/lib/matplotlib/mathtext.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/mathtext.py	2008年06月27日 12:49:34 UTC (rev 5684)
+++ trunk/matplotlib/lib/matplotlib/mathtext.py	2008年06月27日 12:51:50 UTC (rev 5685)
@@ -2088,7 +2088,7 @@
 start_group
 + ZeroOrMore(
 autoDelim
- | simple)
+ ^ simple)
 - end_group
 ).setParseAction(self.group).setName("group")
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月27日 12:49:37
Revision: 5684
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5684&view=rev
Author: mdboom
Date: 2008年06月27日 05:49:34 -0700 (2008年6月27日)
Log Message:
-----------
Fix mathtext parsing bug.
Modified Paths:
--------------
 branches/v0_91_maint/CHANGELOG
 branches/v0_91_maint/lib/matplotlib/mathtext.py
Modified: branches/v0_91_maint/CHANGELOG
===================================================================
--- branches/v0_91_maint/CHANGELOG	2008年06月26日 20:15:45 UTC (rev 5683)
+++ branches/v0_91_maint/CHANGELOG	2008年06月27日 12:49:34 UTC (rev 5684)
@@ -1,3 +1,5 @@
+2008年06月26日 Fix mathtext bug for expressions like $x_{\leftarrow}$ - MGD
+
 2008年06月26日 Fix direction of horizontal/vertical hatches - MGD
 
 ===============================================================
Modified: branches/v0_91_maint/lib/matplotlib/mathtext.py
===================================================================
--- branches/v0_91_maint/lib/matplotlib/mathtext.py	2008年06月26日 20:15:45 UTC (rev 5683)
+++ branches/v0_91_maint/lib/matplotlib/mathtext.py	2008年06月27日 12:49:34 UTC (rev 5684)
@@ -2087,7 +2087,7 @@
 start_group
 + ZeroOrMore(
 autoDelim
- | simple)
+ ^ simple)
 + end_group
 ).setParseAction(self.group).setName("group")
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月26日 20:15:52
Revision: 5683
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5683&view=rev
Author: jdh2358
Date: 2008年06月26日 13:15:45 -0700 (2008年6月26日)
Log Message:
-----------
cleaned some more examples
Modified Paths:
--------------
 trunk/matplotlib/examples/pylab_examples/cohere_demo.py
 trunk/matplotlib/examples/pylab_examples/csd_demo.py
 trunk/matplotlib/examples/pylab_examples/fill_demo.py
 trunk/matplotlib/examples/pylab_examples/hexbin_demo.py
 trunk/matplotlib/examples/pylab_examples/histogram_demo.py
 trunk/matplotlib/examples/pylab_examples/image_demo.py
Added Paths:
-----------
 trunk/matplotlib/lib/mpl_examples
Modified: trunk/matplotlib/examples/pylab_examples/cohere_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/cohere_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/cohere_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -2,36 +2,35 @@
 """
 Compute the coherence of two signals
 """
-import numpy as n
+import numpy as np
+import matplotlib.pyplot as plt
 
-from pylab import figure, show
+# make a little extra space between the subplots
+plt.subplots_adjust(wspace=0.5)
 
 dt = 0.01
-t = n.arange(0, 30, dt)
-Nt = len(t)
-nse1 = n.random.randn(Nt) # white noise 1
-nse2 = n.random.randn(Nt) # white noise 2
-r = n.exp(-t/0.05)
+t = np.arange(0, 30, dt)
+nse1 = np.random.randn(len(t)) # white noise 1
+nse2 = np.random.randn(len(t)) # white noise 2
+r = np.exp(-t/0.05)
 
-cnse1 = n.convolve(nse1, r)*dt # colored noise 1
-cnse1 = cnse1[:Nt]
-cnse2 = n.convolve(nse2, r)*dt # colored noise 2
-cnse2 = cnse2[:Nt]
+cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
+cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
 
 # two signals with a coherent part and a random part
-s1 = 0.01*n.sin(2*n.pi*10*t) + cnse1
-s2 = 0.01*n.sin(2*n.pi*10*t) + cnse2
+s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
+s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
 
-fig = figure()
-ax = fig.add_subplot(211)
-ax.plot(t, s1, 'b-', t, s2, 'g-')
-ax.set_xlim(0,5)
-ax.set_xlabel('time')
-ax.set_ylabel('s1 and s2')
+plt.subplot(211)
+plt.plot(t, s1, 'b-', t, s2, 'g-')
+plt.xlim(0,5)
+plt.xlabel('time')
+plt.ylabel('s1 and s2')
+plt.grid(True)
 
-ax = fig.add_subplot(212)
-cxy, f = ax.cohere(s1, s2, 256, 1./dt)
+plt.subplot(212)
+cxy, f = plt.cohere(s1, s2, 256, 1./dt)
+plt.ylabel('coherence')
+plt.show()
 
-show()
 
-
Modified: trunk/matplotlib/examples/pylab_examples/csd_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/csd_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/csd_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -2,32 +2,35 @@
 """
 Compute the cross spectral density of two signals
 """
-from __future__ import division
-from pylab import *
+import numpy as np
+import matplotlib.pyplot as plt
 
+# make a little extra space between the subplots
+plt.subplots_adjust(wspace=0.5)
+
 dt = 0.01
-t = arange(0, 30, dt)
-nse1 = randn(len(t)) # white noise 1
-nse2 = randn(len(t)) # white noise 2
-r = exp(divide(-t,0.05))
+t = np.arange(0, 30, dt)
+nse1 = np.random.randn(len(t)) # white noise 1
+nse2 = np.random.randn(len(t)) # white noise 2
+r = np.exp(-t/0.05)
 
-cnse1 = convolve(nse1, r, mode=2)*dt # colored noise 1
-cnse1 = cnse1[:len(t)]
-cnse2 = convolve(nse2, r, mode=2)*dt # colored noise 2
-cnse2 = cnse2[:len(t)]
+cnse1 = np.convolve(nse1, r, mode='same')*dt # colored noise 1
+cnse2 = np.convolve(nse2, r, mode='same')*dt # colored noise 2
 
 # two signals with a coherent part and a random part
-s1 = 0.01*sin(2*pi*10*t) + cnse1
-s2 = 0.01*sin(2*pi*10*t) + cnse2
+s1 = 0.01*np.sin(2*np.pi*10*t) + cnse1
+s2 = 0.01*np.sin(2*np.pi*10*t) + cnse2
 
-subplot(211)
-plot(t, s1, 'b-', t, s2, 'g-')
-xlim(0,5)
-xlabel('time')
-ylabel('s1 and s2')
+plt.subplot(211)
+plt.plot(t, s1, 'b-', t, s2, 'g-')
+plt.xlim(0,5)
+plt.xlabel('time')
+plt.ylabel('s1 and s2')
+plt.grid(True)
 
-subplot(212)
-cxy, f = csd(s1, s2, 256, 1/dt)
-show()
+plt.subplot(212)
+cxy, f = plt.csd(s1, s2, 256, 1./dt)
+plt.ylabel('CSD (db)')
+plt.show()
 
 
Modified: trunk/matplotlib/examples/pylab_examples/fill_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/fill_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/fill_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -1,8 +1,10 @@
 #!/usr/bin/env python
-from pylab import *
-t = arange(0.0, 1.01, 0.01)
-s = sin(2*2*pi*t)
+import numpy as np
+import matplotlib.pyplot as plt
 
-fill(t, s*exp(-5*t), 'r')
-grid(True)
-show()
+t = np.arange(0.0, 1.01, 0.01)
+s = np.sin(2*2*np.pi*t)
+
+plt.fill(t, s*np.exp(-5*t), 'r')
+plt.grid(True)
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/hexbin_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/hexbin_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/hexbin_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -1,13 +1,12 @@
-'''
+"""
 hexbin is an axes method or pyplot function that is essentially
 a pcolor of a 2-D histogram with hexagonal cells. It can be
 much more informative than a scatter plot; in the first subplot
 below, try substituting 'scatter' for 'hexbin'.
-'''
+"""
 
-from matplotlib.pyplot import *
 import numpy as np
-
+import matplotlib.pyplot as plt
 n = 100000
 x = np.random.standard_normal(n)
 y = 2.0 + 3.0 * x + 4.0 * np.random.standard_normal(n)
@@ -16,19 +15,20 @@
 ymin = y.min()
 ymax = y.max()
 
-subplot(121)
-hexbin(x,y)
-axis([xmin, xmax, ymin, ymax])
-title("Hexagon binning")
-cb = colorbar()
+plt.subplots_adjust(hspace=0.5)
+plt.subplot(121)
+plt.hexbin(x,y)
+plt.axis([xmin, xmax, ymin, ymax])
+plt.title("Hexagon binning")
+cb = plt.colorbar()
 cb.set_label('counts')
 
-subplot(122)
-hexbin(x,y,bins='log')
-axis([xmin, xmax, ymin, ymax])
-title("With a log color scale")
-cb = colorbar()
+plt.subplot(122)
+plt.hexbin(x,y,bins='log')
+plt.axis([xmin, xmax, ymin, ymax])
+plt.title("With a log color scale")
+cb = plt.colorbar()
 cb.set_label('log10(N)')
 
-show()
+plt.show()
 
Modified: trunk/matplotlib/examples/pylab_examples/histogram_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/histogram_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/histogram_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -1,23 +1,22 @@
 #!/usr/bin/env python
-import pylab as P
+import numpy as np
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
 
 mu, sigma = 100, 15
-x = mu + sigma*P.randn(10000)
+x = mu + sigma*np.random.randn(10000)
 
 # the histogram of the data
-n, bins, patches = P.hist(x, 50, normed=1)
-P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)
+n, bins, patches = plt.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
 
 # add a 'best fit' line
-y = P.normpdf( bins, mu, sigma)
-l = P.plot(bins, y, 'r--')
-P.setp(l, 'linewidth', 1)
+y = mlab.normpdf( bins, mu, sigma)
+l = plt.plot(bins, y, 'r--', linewidth=1)
 
-P.xlabel('Smarts')
-P.ylabel('Probability')
-P.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
-P.axis([40, 160, 0, 0.03])
-P.grid(True)
+plt.xlabel('Smarts')
+plt.ylabel('Probability')
+plt.title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
+plt.axis([40, 160, 0, 0.03])
+plt.grid(True)
 
-#P.savefig('histogram_demo',dpi=72)
-P.show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/image_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/image_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
+++ trunk/matplotlib/examples/pylab_examples/image_demo.py	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -1,16 +1,18 @@
 #!/usr/bin/env python
-from pylab import *
+import numpy as np
+import matplotlib.cm as cm
+import matplotlib.mlab as mlab
+import matplotlib.pyplot as plt
 
 delta = 0.025
-x = y = arange(-3.0, 3.0, delta)
-X, Y = meshgrid(x, y)
-Z1 = bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
-Z2 = bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
+x = y = np.arange(-3.0, 3.0, delta)
+X, Y = np.meshgrid(x, y)
+Z1 = mlab.bivariate_normal(X, Y, 1.0, 1.0, 0.0, 0.0)
+Z2 = mlab.bivariate_normal(X, Y, 1.5, 0.5, 1, 1)
 Z = Z2-Z1 # difference of Gaussians
 
-im = imshow(Z, interpolation='bilinear', cmap=cm.gray,
- origin='lower', extent=[-3,3,-3,3])
+im = plt.imshow(Z, interpolation='bilinear', cmap=cm.gray,
+ origin='lower', extent=[-3,3,-3,3])
 
-savefig('image_demo')
-show()
+plt.show()
 
Added: trunk/matplotlib/lib/mpl_examples
===================================================================
--- trunk/matplotlib/lib/mpl_examples	 (rev 0)
+++ trunk/matplotlib/lib/mpl_examples	2008年06月26日 20:15:45 UTC (rev 5683)
@@ -0,0 +1 @@
+link ../examples
\ No newline at end of file
Property changes on: trunk/matplotlib/lib/mpl_examples
___________________________________________________________________
Name: svn:special
 + *
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <jd...@us...> - 2008年06月26日 19:08:50
Revision: 5682
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5682&view=rev
Author: jdh2358
Date: 2008年06月26日 12:08:48 -0700 (2008年6月26日)
Log Message:
-----------
cleaned some docs for api examples
Modified Paths:
--------------
 trunk/matplotlib/examples/pylab_examples/bar_stacked.py
 trunk/matplotlib/examples/pylab_examples/broken_barh.py
 trunk/matplotlib/examples/pylab_examples/hline_demo.py
 trunk/matplotlib/examples/pylab_examples/xcorr_demo.py
Modified: trunk/matplotlib/examples/pylab_examples/bar_stacked.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/bar_stacked.py	2008年06月26日 18:05:17 UTC (rev 5681)
+++ trunk/matplotlib/examples/pylab_examples/bar_stacked.py	2008年06月26日 19:08:48 UTC (rev 5682)
@@ -1,23 +1,25 @@
 #!/usr/bin/env python
 # a stacked bar plot with errorbars
-from pylab import *
+import numpy as np
+import matplotlib.pyplot as plt
 
+
 N = 5
 menMeans = (20, 35, 30, 35, 27)
 womenMeans = (25, 32, 34, 20, 25)
 menStd = (2, 3, 4, 1, 2)
 womenStd = (3, 5, 2, 3, 3)
-ind = arange(N) # the x locations for the groups
+ind = np.arange(N) # the x locations for the groups
 width = 0.35 # the width of the bars: can also be len(x) sequence
 
-p1 = bar(ind, menMeans, width, color='r', yerr=womenStd)
-p2 = bar(ind, womenMeans, width, color='y',
- bottom=menMeans, yerr=menStd)
+p1 = plt.bar(ind, menMeans, width, color='r', yerr=womenStd)
+p2 = plt.bar(ind, womenMeans, width, color='y',
+ bottom=menMeans, yerr=menStd)
 
-ylabel('Scores')
-title('Scores by group and gender')
-xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') )
-yticks(arange(0,81,10))
-legend( (p1[0], p2[0]), ('Men', 'Women') )
+plt.ylabel('Scores')
+plt.title('Scores by group and gender')
+plt.xticks(ind+width/2., ('G1', 'G2', 'G3', 'G4', 'G5') )
+plt.yticks(np.arange(0,81,10))
+plt.legend( (p1[0], p2[0]), ('Men', 'Women') )
 
-show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/broken_barh.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/broken_barh.py	2008年06月26日 18:05:17 UTC (rev 5681)
+++ trunk/matplotlib/examples/pylab_examples/broken_barh.py	2008年06月26日 19:08:48 UTC (rev 5682)
@@ -1,10 +1,9 @@
-
 """
 Make a "broken" horizontal bar plot, ie one with gaps
 """
-from matplotlib.pyplot import figure, show
+import matplotlib.pyplot as plt
 
-fig = figure()
+fig = plt.figure()
 ax = fig.add_subplot(111)
 ax.broken_barh([ (110, 30), (150, 10) ] , (10, 9), facecolors='blue')
 ax.broken_barh([ (10, 50), (100, 20), (130, 10)] , (20, 9),
@@ -22,4 +21,4 @@
 horizontalalignment='right', verticalalignment='top')
 
 #fig.savefig('broken_barh', dpi=100)
-show()
+plt.show()
Modified: trunk/matplotlib/examples/pylab_examples/hline_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/hline_demo.py	2008年06月26日 18:05:17 UTC (rev 5681)
+++ trunk/matplotlib/examples/pylab_examples/hline_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
@@ -1,22 +1,23 @@
 #!/usr/bin/env python
-from matplotlib.pyplot import *
-from numpy import sin, exp, absolute, pi, arange
-from numpy.random import normal
+import numpy as np
+import matplotlib.pyplot as plt
 
 def f(t):
- s1 = sin(2*pi*t)
- e1 = exp(-t)
- return absolute((s1*e1))+.05
+ s1 = np.sin(2*np.pi*t)
+ e1 = np.exp(-t)
+ return np.absolute((s1*e1))+.05
 
 
-t = arange(0.0, 5.0, 0.1)
+t = np.arange(0.0, 5.0, 0.1)
 s = f(t)
-nse = normal(0.0, 0.3, t.shape) * s
+nse = np.random.normal(0.0, 0.3, t.shape) * s
 
-plot(s+nse, t, 'b^')
-hlines(t, [0], s)
-xlabel('time (s)')
-title('Comparison of model with data')
-savefig('test')
-show()
 
+plt.plot(s+nse, t, 'b^')
+plt.hlines(t, [0], s, lw=2)
+plt.xlabel('time (s)')
+plt.title('Comparison of model with data')
+plt.savefig('test')
+plt.xlim(xmin=0)
+plt.show()
+
Modified: trunk/matplotlib/examples/pylab_examples/xcorr_demo.py
===================================================================
--- trunk/matplotlib/examples/pylab_examples/xcorr_demo.py	2008年06月26日 18:05:17 UTC (rev 5681)
+++ trunk/matplotlib/examples/pylab_examples/xcorr_demo.py	2008年06月26日 19:08:48 UTC (rev 5682)
@@ -1,17 +1,17 @@
-from matplotlib.pylab import figure, show
-import numpy
+import matplotlib.pyplot as plt
+import numpy as np
 
-x,y = numpy.random.randn(2,100)
-fig = figure()
+x,y = np.random.randn(2,100)
+fig = plt.figure()
 ax1 = fig.add_subplot(211)
-ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True)
+ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
 ax1.grid(True)
 ax1.axhline(0, color='black', lw=2)
 
 ax2 = fig.add_subplot(212, sharex=ax1)
-ax2.acorr(x, usevlines=True, normed=True, maxlags=50)
+ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
 ax2.grid(True)
 ax2.axhline(0, color='black', lw=2)
 
-show()
+plt.show()
 
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月26日 18:05:18
Revision: 5681
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5681&view=rev
Author: mdboom
Date: 2008年06月26日 11:05:17 -0700 (2008年6月26日)
Log Message:
-----------
Include some examples inline in the api docs.
Modified Paths:
--------------
 trunk/matplotlib/doc/sphinxext/plot_directive.py
 trunk/matplotlib/lib/matplotlib/axes.py
Modified: trunk/matplotlib/doc/sphinxext/plot_directive.py
===================================================================
--- trunk/matplotlib/doc/sphinxext/plot_directive.py	2008年06月26日 17:47:04 UTC (rev 5680)
+++ trunk/matplotlib/doc/sphinxext/plot_directive.py	2008年06月26日 18:05:17 UTC (rev 5681)
@@ -13,7 +13,7 @@
 source will be included inline, as well as a link to the source.
 """
 
-import sys, os, glob
+import sys, os, glob, shutil
 from docutils.parsers.rst import directives
 
 try:
@@ -40,29 +40,10 @@
 'class': directives.class_option,
 'include-source': directives.flag }
 
-template_no_source = """
+template = """
 .. htmlonly::
 
- [ `<../%(srcdir)s/%(reference)s>`__,
- `png <../%(srcdir)s/%(basename)s.hires.png>`__,
- `pdf <../%(srcdir)s/%(basename)s.pdf>`__]
-
- .. image:: ../%(srcdir)s/%(basename)s.png
-%(options)s
-
-
-.. latexonly::
- .. image:: ../%(srcdir)s/%(basename)s.pdf
-%(options)s
-
-"""
-
-template_source = """
-.. literalinclude:: ../pyplots/%(reference)s
-
-.. htmlonly::
-
- [ `py <../%(srcdir)s/%(reference)s>`__,
+ [`py <../%(srcdir)s/%(basename)s.py>`__,
 `png <../%(srcdir)s/%(basename)s.hires.png>`__,
 `pdf <../%(srcdir)s/%(basename)s.pdf>`__]
 
@@ -90,6 +71,9 @@
 basename, ext = os.path.splitext(fname)
 all_exists = True
 
+ if basedir != outdir:
+ shutil.copyfile(fullpath, os.path.join(outdir, fname))
+
 for format, dpi in formats:
 outname = os.path.join(outdir, '%s.%s' % (basename, format))
 if not os.path.exists(outname):
@@ -109,10 +93,10 @@
 if os.path.exists(outname): continue
 plt.savefig(outname, dpi=dpi)
 
-
 def run(arguments, options, state_machine, lineno):
 reference = directives.uri(arguments[0])
- basename, ext = os.path.splitext(reference)
+ basedir, fname = os.path.split(reference)
+ basename, ext = os.path.splitext(fname)
 
 # todo - should we be using the _static dir for the outdir, I am
 # not sure we want to corrupt that dir with autogenerated files
@@ -126,16 +110,16 @@
 # the figs into the right place, so we may want to do that here instead.
 
 if options.has_key('include-source'):
- template = template_source
+ lines = ['.. literalinclude:: ../pyplots/%(reference)s' % locals()]
 del options['include-source']
 else:
- template = template_no_source
+ lines = []
+
 options = [' :%s: %s' % (key, val) for key, val in
 options.items()]
 options = "\n".join(options)
 
- lines = template % locals()
- lines = lines.split('\n')
+ lines.extend((template % locals()).split('\n'))
 
 state_machine.insert_input(
 lines, state_machine.input_lines.source(0))
Modified: trunk/matplotlib/lib/matplotlib/axes.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/axes.py	2008年06月26日 17:47:04 UTC (rev 5680)
+++ trunk/matplotlib/lib/matplotlib/axes.py	2008年06月26日 18:05:17 UTC (rev 5681)
@@ -2879,6 +2879,9 @@
 *linestyle*:
 [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ]
 
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/hline_demo.py
 """
 if kwargs.get('fmt') is not None:
 raise DeprecationWarning(
@@ -3362,6 +3365,13 @@
 See the respective :meth:`~matplotlib.axes.Axes.plot` or
 :meth:`~matplotlib.axes.Axes.vlines` functions for
 documentation on valid kwargs.
+
+ **Example:**
+
+ :func:`~matplotlib.pyplot.xcorr` above, and
+ :func:`~matplotlib.pyplot.acorr` below.
+
+ .. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
 """
 return self.xcorr(x, x, **kwargs)
 acorr.__doc__ = cbook.dedent(acorr.__doc__) % martist.kwdocd
@@ -3410,6 +3420,13 @@
 
 *maxlags* is a positive integer detailing the number of lags to show.
 The default value of *None* will return all ``(2*len(x)-1)`` lags.
+
+ **Example:**
+
+ :func:`~matplotlib.pyplot.xcorr` above, and
+ :func:`~matplotlib.pyplot.acorr` below.
+
+ .. plot:: ../mpl_examples/pylab_examples/xcorr_demo.py
 """
 
 Nx = len(x)
@@ -3706,6 +3723,12 @@
 Other optional kwargs:
 
 %(Rectangle)s
+
+ **Example:**
+
+ A stacked bar chart.
+
+ .. plot:: ../mpl_examples/pylab_examples/bar_stacked.py
 """
 if not self._hold: self.cla()
 
@@ -3998,6 +4021,10 @@
 or a sequence of arguments for the various bars, ie::
 
 facecolors = ('black', 'red', 'green')
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/broken_barh.py
 """
 col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs)
 self.add_collection(col, autolim=True)
@@ -5013,6 +5040,10 @@
 :meth:`~matplotlib.collection.PolyCollection.get_array` on
 this :class:`~matplotlib.collections.PolyCollection` to get
 the counts in each hexagon.
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/hexbin_demo.py
 """
 
 if not self._hold: self.cla()
@@ -5166,6 +5197,10 @@
 
 Optional kwargs control the arrow properties:
 %(FancyArrow)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/arrow_demo.py
 """
 a = mpatches.FancyArrow(x, y, dx, dy, **kwargs)
 self.add_artist(a)
@@ -5225,6 +5260,10 @@
 kwargs control the Polygon properties:
 
 %(Polygon)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/fill_demo.py
 """
 if not self._hold: self.cla()
 
@@ -5334,6 +5373,10 @@
 Additional kwargs are :class:`~matplotlib.artist.Artist` properties:
 
 %(Artist)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/image_demo.py
 """
 
 if not self._hold: self.cla()
@@ -6081,42 +6124,6 @@
 
 %(Rectangle)s
 
- Here is an example which generates a histogram of normally
- distributed random numbers and plot the analytic PDF over it::
-
- import numpy as np
- import matplotlib.pyplot as plt
- import matplotlib.mlab as mlab
-
- mu, sigma = 100, 15
- x = mu + sigma * np.random.randn(10000)
-
- fig = plt.figure()
- ax = fig.add_subplot(111)
-
- # the histogram of the data
- n, bins, patches = ax.hist(x, 50, normed=1, facecolor='green', alpha=0.75)
-
- # hist uses np.histogram under the hood to create 'n' and 'bins'.
- # np.histogram returns the bin edges, so there will be 50 probability
- # density values in n, 51 bin edges in bins and 50 patches. To get
- # everything lined up, we'll compute the bin centers
- bincenters = 0.5*(bins[1:]+bins[:-1])
-
- # add a 'best fit' line for the normal PDF
- y = mlab.normpdf( bincenters, mu, sigma)
- l = ax.plot(bincenters, y, 'r--', linewidth=1)
-
- ax.set_xlabel('Smarts')
- ax.set_ylabel('Probability')
- ax.set_title(r'$\mathrm{Histogram\ of\ IQ:}\ \mu=100,\ \sigma=15$')
- ax.set_xlim(40, 160)
- ax.set_ylim(0, 0.03)
- ax.grid(True)
-
- #fig.savefig('histogram_demo',dpi=72)
- plt.show()
-
 You can use labels for your histogram, and only the first
 :class:`~matplotlib.patches.Rectangle` gets the label (the
 others get the magic string '_nolegend_'. This will make the
@@ -6126,6 +6133,9 @@
 ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5)
 ax.legend()
 
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/histogram_demo.py
 """
 if not self._hold: self.cla()
 
@@ -6413,6 +6423,10 @@
 kwargs control the Line2D properties:
 
 %(Line2D)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/csd_demo.py
 """
 if not self._hold: self.cla()
 pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap)
@@ -6466,6 +6480,10 @@
 properties of the coherence plot:
 
 %(Line2D)s
+
+ **Example:**
+
+ .. plot:: ../mpl_examples/pylab_examples/cohere_demo.py
 """
 if not self._hold: self.cla()
 cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap)
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
Revision: 5680
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5680&view=rev
Author: mdboom
Date: 2008年06月26日 10:47:04 -0700 (2008年6月26日)
Log Message:
-----------
Fix documentation build on Debian.
Modified Paths:
--------------
 trunk/matplotlib/doc/pyplots/tex_unicode_demo.py
Modified: trunk/matplotlib/doc/pyplots/tex_unicode_demo.py
===================================================================
--- trunk/matplotlib/doc/pyplots/tex_unicode_demo.py	2008年06月26日 14:05:34 UTC (rev 5679)
+++ trunk/matplotlib/doc/pyplots/tex_unicode_demo.py	2008年06月26日 17:47:04 UTC (rev 5680)
@@ -13,7 +13,7 @@
 plot(t, s)
 
 xlabel(r'\textbf{time (s)}')
-ylabel(unicode(r'\textit{Velocity (\xB0/sec)}','latin-1'),fontsize=16)
+ylabel(unicode('\\textit{Velocity (\xB0/sec)}','latin-1'),fontsize=16)
 title(r"\TeX\ is Number $\displaystyle\sum_{n=1}^\infty\frac{-e^{i\pi}}{2^n}$!",
 fontsize=16, color='r')
 grid(True)
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月26日 14:05:35
Revision: 5679
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5679&view=rev
Author: mdboom
Date: 2008年06月26日 07:05:34 -0700 (2008年6月26日)
Log Message:
-----------
Tagging 0.98.2 release.
Added Paths:
-----------
 tags/v0_98_2/
Copied: tags/v0_98_2 (from rev 5667, trunk/matplotlib)
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
From: <md...@us...> - 2008年06月26日 12:39:36
Revision: 5678
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5678&view=rev
Author: mdboom
Date: 2008年06月26日 05:39:30 -0700 (2008年6月26日)
Log Message:
-----------
Merged revisions 5676-5677 via svnmerge from 
https://matplotlib.svn.sf.net/svnroot/matplotlib/branches/v0_91_maint
........
r5677 | mdboom | 2008年06月26日 08:36:15 -0400 (2008年6月26日) | 1 line
Oops in last commit
........
Modified Paths:
--------------
 trunk/matplotlib/lib/matplotlib/backends/backend_ps.py
Property Changed:
----------------
 trunk/matplotlib/
Property changes on: trunk/matplotlib
___________________________________________________________________
Name: svnmerge-integrated
 - /branches/v0_91_maint:1-5675
 + /branches/v0_91_maint:1-5677
Modified: trunk/matplotlib/lib/matplotlib/backends/backend_ps.py
===================================================================
--- trunk/matplotlib/lib/matplotlib/backends/backend_ps.py	2008年06月26日 12:36:15 UTC (rev 5677)
+++ trunk/matplotlib/lib/matplotlib/backends/backend_ps.py	2008年06月26日 12:39:30 UTC (rev 5678)
@@ -254,7 +254,7 @@
 hatchr cvi hatchgap idiv hatchgap mul
 {hatcht m 0 hatchb hatcht sub r }
 for
- strokeCHAN
+ stroke
 grestore
 """ % (angle, 12/density)
 self._pswriter.write("gsave\n")
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.
Revision: 5677
 http://matplotlib.svn.sourceforge.net/matplotlib/?rev=5677&view=rev
Author: mdboom
Date: 2008年06月26日 05:36:15 -0700 (2008年6月26日)
Log Message:
-----------
Oops in last commit
Modified Paths:
--------------
 branches/v0_91_maint/lib/matplotlib/backends/backend_ps.py
Modified: branches/v0_91_maint/lib/matplotlib/backends/backend_ps.py
===================================================================
--- branches/v0_91_maint/lib/matplotlib/backends/backend_ps.py	2008年06月26日 12:32:32 UTC (rev 5676)
+++ branches/v0_91_maint/lib/matplotlib/backends/backend_ps.py	2008年06月26日 12:36:15 UTC (rev 5677)
@@ -254,7 +254,7 @@
 hatchr cvi hatchgap idiv hatchgap mul
 {hatcht moveto 0 hatchb hatcht sub rlineto}
 for
- strokeCHAN
+ stroke
 grestore
 """ % (angle, 12/density)
 self._pswriter.write("gsave\n")
This was sent by the SourceForge.net collaborative development platform, the world's largest Open Source development site.

Showing results of 356

1 2 3 .. 15 > >> (Page 1 of 15)
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.
Thanks for helping keep SourceForge clean.
X





Briefly describe the problem (required):
Upload screenshot of ad (required):
Select a file, or drag & drop file here.
Screenshot instructions:

Click URL instructions:
Right-click on the ad, choose "Copy Link", then paste here →
(This may not be possible with some types of ads)

More information about our ad policies

Ad destination/click URL:

AltStyle によって変換されたページ (->オリジナル) /