In Files

  • complex.c
  • numeric.c
  • rational.c

Class/Module Index [+]

Quicksearch
No matching classes.

Float

Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.

Floating point has a different arithmetic and is an inexact number. So you should know its esoteric system. See following:

Constants

DIG

The minimum number of significant decimal digits in a double-precision floating point.

Usually defaults to 15.

EPSILON

The difference between 1 and the smallest double-precision floating point number greater than 1.

Usually defaults to 2.2204460492503131e-16.

INFINITY

An expression representing positive infinity.

MANT_DIG

The number of base digits for the double data type.

Usually defaults to 53.

MAX

The largest possible integer in a double-precision floating point number.

Usually defaults to 1.7976931348623157e+308.

MAX_10_EXP

The largest positive exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to 308.

MAX_EXP

The largest possible exponent value in a double-precision floating point.

Usually defaults to 1024.

MIN

The smallest positive normalized number in a double-precision floating point.

Usually defaults to 2.2250738585072014e-308.

If the platform supports denormalized numbers, there are numbers between zero and Float::MIN. 0.0.next_float returns the smallest positive floating point number including denormalized numbers.

MIN_10_EXP

The smallest negative exponent in a double-precision floating point where 10 raised to this power minus 1.

Usually defaults to -307.

MIN_EXP

The smallest possible exponent value in a double-precision floating point.

Usually defaults to -1021.

NAN

An expression representing a value which is "not a number".

RADIX

The base of the floating point, or number of unique digits used to represent the number.

Usually defaults to 2 on most systems, which would represent a base-10 decimal.

ROUNDS

Represents the rounding mode for floating point addition.

Usually defaults to 1, rounding to the nearest number.

Other modes include:

-1

Indeterminable

0

Rounding towards zero

1

Rounding to the nearest number

2

Rounding towards positive infinity

3

Rounding towards negative infinity

Public Instance Methods

float % other → float click to toggle source

Returns the modulo after division of float by other.

6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
 
 static VALUE
flo_mod(VALUE x, VALUE y)
{
 double fy;
 if (RB_TYPE_P(y, T_FIXNUM)) {
 fy = (double)FIX2LONG(y);
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 fy = rb_big2dbl(y);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 fy = RFLOAT_VALUE(y);
 }
 else {
 return rb_num_coerce_bin(x, y, '%');
 }
 return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
 
float * other → float click to toggle source

Returns a new Float which is the product of float and other.

 
 static VALUE
flo_mul(VALUE x, VALUE y)
{
 if (RB_TYPE_P(y, T_FIXNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
 }
 else {
 return rb_num_coerce_bin(x, y, '*');
 }
}
 
float ** other → float click to toggle source

Raises float to the power of other.

2.0**3 #=> 8.0
 
 VALUE
rb_float_pow(VALUE x, VALUE y)
{
 double dx, dy;
 if (RB_TYPE_P(y, T_FIXNUM)) {
 dx = RFLOAT_VALUE(x);
 dy = (double)FIX2LONG(y);
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 dx = RFLOAT_VALUE(x);
 dy = rb_big2dbl(y);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 dx = RFLOAT_VALUE(x);
 dy = RFLOAT_VALUE(y);
 if (dx < 0 && dy != round(dy))
 return num_funcall1(rb_complex_raw1(x), idPow, y);
 }
 else {
 return rb_num_coerce_bin(x, y, idPow);
 }
 return DBL2NUM(pow(dx, dy));
}
 
float + other → float click to toggle source

Returns a new Float which is the sum of float and other.

 
 static VALUE
flo_plus(VALUE x, VALUE y)
{
 if (RB_TYPE_P(y, T_FIXNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
 }
 else {
 return rb_num_coerce_bin(x, y, '+');
 }
}
 
float - other → float click to toggle source

Returns a new Float which is the difference of float and other.

 
 static VALUE
flo_minus(VALUE x, VALUE y)
{
 if (RB_TYPE_P(y, T_FIXNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
 }
 else {
 return rb_num_coerce_bin(x, y, '-');
 }
}
 
-float → float click to toggle source

Returns float, negated.

 
 VALUE
rb_float_uminus(VALUE flt)
{
 return DBL2NUM(-RFLOAT_VALUE(flt));
}
 
float / other → float click to toggle source

Returns a new Float which is the result of dividing float by other.

 
 static VALUE
flo_div(VALUE x, VALUE y)
{
 long f_y;
 double d;
 if (RB_TYPE_P(y, T_FIXNUM)) {
 f_y = FIX2LONG(y);
 return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 d = rb_big2dbl(y);
 return DBL2NUM(RFLOAT_VALUE(x) / d);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
 }
 else {
 return rb_num_coerce_bin(x, y, '/');
 }
}
 
float < real → true or false click to toggle source

Returns true if float is less than real.

The result of NaN < NaN is undefined, so an implementation-dependent value is returned.

 
 static VALUE
flo_lt(VALUE x, VALUE y)
{
 double a, b;
 a = RFLOAT_VALUE(x);
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 VALUE rel = rb_integer_float_cmp(y, x);
 if (FIXNUM_P(rel))
 return -FIX2INT(rel) < 0 ? Qtrue : Qfalse;
 return Qfalse;
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return rb_num_coerce_relop(x, y, '<');
 }
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a < b)?Qtrue:Qfalse;
}
 
float <= real → true or false click to toggle source

Returns true if float is less than or equal to real.

The result of NaN <= NaN is undefined, so an implementation-dependent value is returned.

 
 static VALUE
flo_le(VALUE x, VALUE y)
{
 double a, b;
 a = RFLOAT_VALUE(x);
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 VALUE rel = rb_integer_float_cmp(y, x);
 if (FIXNUM_P(rel))
 return -FIX2INT(rel) <= 0 ? Qtrue : Qfalse;
 return Qfalse;
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return rb_num_coerce_relop(x, y, idLE);
 }
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a <= b)?Qtrue:Qfalse;
}
 
float <=> real → -1, 0, +1, or nil click to toggle source

Returns -1, 0, or +1 depending on whether float is less than, equal to, or greater than real. This is the basis for the tests in the Comparable module.

The result of NaN <=> NaN is undefined, so an implementation-dependent value is returned.

nil is returned if the two values are incomparable.

 
 static VALUE
flo_cmp(VALUE x, VALUE y)
{
 double a, b;
 VALUE i;
 a = RFLOAT_VALUE(x);
 if (isnan(a)) return Qnil;
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 VALUE rel = rb_integer_float_cmp(y, x);
 if (FIXNUM_P(rel))
 return INT2FIX(-FIX2INT(rel));
 return rel;
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
 }
 else {
 if (isinf(a) && (i = rb_check_funcall(y, rb_intern("infinite?"), 0, 0)) != Qundef) {
 if (RTEST(i)) {
 int j = rb_cmpint(i, x, y);
 j = (a > 0.0) ? (j > 0 ? 0 : +1) : (j < 0 ? 0 : -1);
 return INT2FIX(j);
 }
 if (a > 0.0) return INT2FIX(1);
 return INT2FIX(-1);
 }
 return rb_num_coerce_cmp(x, y, id_cmp);
 }
 return rb_dbl_cmp(a, b);
}
 
float == obj → true or false click to toggle source

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

1.0 == 1 #=> true

The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

 
 VALUE
rb_float_equal(VALUE x, VALUE y)
{
 volatile double a, b;
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 return rb_integer_float_eq(y, x);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return num_equal(x, y);
 }
 a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a == b)?Qtrue:Qfalse;
}
 
float == obj → true or false click to toggle source

Returns true only if obj has the same value as float. Contrast this with Float#eql?, which requires obj to be a Float.

1.0 == 1 #=> true

The result of NaN == NaN is undefined, so an implementation-dependent value is returned.

 
 VALUE
rb_float_equal(VALUE x, VALUE y)
{
 volatile double a, b;
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 return rb_integer_float_eq(y, x);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return num_equal(x, y);
 }
 a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a == b)?Qtrue:Qfalse;
}
 
float> real → true or false click to toggle source

Returns true if float is greater than real.

The result of NaN > NaN is undefined, so an implementation-dependent value is returned.

 
 VALUE
rb_float_gt(VALUE x, VALUE y)
{
 double a, b;
 a = RFLOAT_VALUE(x);
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 VALUE rel = rb_integer_float_cmp(y, x);
 if (FIXNUM_P(rel))
 return -FIX2INT(rel) > 0 ? Qtrue : Qfalse;
 return Qfalse;
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return rb_num_coerce_relop(x, y, '>');
 }
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a > b)?Qtrue:Qfalse;
}
 
float>= real → true or false click to toggle source

Returns true if float is greater than or equal to real.

The result of NaN >= NaN is undefined, so an implementation-dependent value is returned.

 
 static VALUE
flo_ge(VALUE x, VALUE y)
{
 double a, b;
 a = RFLOAT_VALUE(x);
 if (RB_TYPE_P(y, T_FIXNUM) || RB_TYPE_P(y, T_BIGNUM)) {
 VALUE rel = rb_integer_float_cmp(y, x);
 if (FIXNUM_P(rel))
 return -FIX2INT(rel) >= 0 ? Qtrue : Qfalse;
 return Qfalse;
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(b)) return Qfalse;
#endif
 }
 else {
 return rb_num_coerce_relop(x, y, idGE);
 }
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a)) return Qfalse;
#endif
 return (a >= b)?Qtrue:Qfalse;
}
 
abs → float click to toggle source

Returns the absolute value of float.

(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56

Float#magnitude is an alias for Float#abs.

 
 VALUE
rb_float_abs(VALUE flt)
{
 double val = fabs(RFLOAT_VALUE(flt));
 return DBL2NUM(val);
}
 
angle → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
 static VALUE
float_arg(VALUE self)
{
 if (isnan(RFLOAT_VALUE(self)))
 return self;
 if (f_tpositive_p(self))
 return INT2FIX(0);
 return rb_const_get(rb_mMath, id_PI);
}
 
arg → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
 static VALUE
float_arg(VALUE self)
{
 if (isnan(RFLOAT_VALUE(self)))
 return self;
 if (f_tpositive_p(self))
 return INT2FIX(0);
 return rb_const_get(rb_mMath, id_PI);
}
 
ceil([ndigits]) → integer or float click to toggle source

Returns the smallest number greater than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.ceil #=> 2
2.0.ceil #=> 2
(-1.2).ceil #=> -1
(-2.0).ceil #=> -2
1.234567.ceil(2) #=> 1.24
1.234567.ceil(3) #=> 1.235
1.234567.ceil(4) #=> 1.2346
1.234567.ceil(5) #=> 1.23457
34567.89.ceil(-5) #=> 100000
34567.89.ceil(-4) #=> 40000
34567.89.ceil(-3) #=> 35000
34567.89.ceil(-2) #=> 34600
34567.89.ceil(-1) #=> 34570
34567.89.ceil(0) #=> 34568
34567.89.ceil(1) #=> 34567.9
34567.89.ceil(2) #=> 34567.89
34567.89.ceil(3) #=> 34567.89

Note that the limited precision of floating point arithmetic might lead to surprising results:

(2.1 / 0.7).ceil #=> 4 (!)
 
 static VALUE
flo_ceil(int argc, VALUE *argv, VALUE num)
{
 double number, f;
 int ndigits = 0;
 if (rb_check_arity(argc, 0, 1)) {
 ndigits = NUM2INT(argv[0]);
 }
 number = RFLOAT_VALUE(num);
 if (number == 0.0) {
 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 }
 if (ndigits > 0) {
 int binexp;
 frexp(number, &binexp);
 if (float_round_overflow(ndigits, binexp)) return num;
 if (number < 0.0 && float_round_underflow(ndigits, binexp))
 return DBL2NUM(0.0);
 f = pow(10, ndigits);
 f = ceil(number * f) / f;
 return DBL2NUM(f);
 }
 else {
 num = dbl2ival(ceil(number));
 if (ndigits < 0) num = rb_int_ceil(num, ndigits);
 return num;
 }
}
 
coerce(numeric) → array click to toggle source

Returns an array with both numeric and float represented as Float objects.

This is achieved by converting numeric to a Float.

1.2.coerce(3) #=> [3.0, 1.2]
2.5.coerce(1.1) #=> [1.1, 2.5]
 
 static VALUE
flo_coerce(VALUE x, VALUE y)
{
 return rb_assoc_new(rb_Float(y), x);
}
 
denominator → integer click to toggle source

Returns the denominator (always positive). The result is machine dependent.

See also Float#numerator.

 
 static VALUE
float_denominator(VALUE self)
{
 double d = RFLOAT_VALUE(self);
 VALUE r;
 if (isinf(d) || isnan(d))
 return INT2FIX(1);
 r = float_to_r(self);
 if (canonicalization && k_integer_p(r)) {
 return ONE;
 }
 return nurat_denominator(r);
}
 
divmod(numeric) → array click to toggle source

See Numeric#divmod.

42.0.divmod(6) #=> [7, 0.0]
42.0.divmod(5) #=> [8, 2.0]
 
 static VALUE
flo_divmod(VALUE x, VALUE y)
{
 double fy, div, mod;
 volatile VALUE a, b;
 if (RB_TYPE_P(y, T_FIXNUM)) {
 fy = (double)FIX2LONG(y);
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 fy = rb_big2dbl(y);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 fy = RFLOAT_VALUE(y);
 }
 else {
 return rb_num_coerce_bin(x, y, id_divmod);
 }
 flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
 a = dbl2ival(div);
 b = DBL2NUM(mod);
 return rb_assoc_new(a, b);
}
 
eql?(obj) → true or false click to toggle source

Returns true only if obj is a Float with the same value as float. Contrast this with Float#==, which performs type conversions.

1.0.eql?(1) #=> false

The result of NaN.eql?(NaN) is undefined, so an implementation-dependent value is returned.

 
 VALUE
rb_float_eql(VALUE x, VALUE y)
{
 if (RB_TYPE_P(y, T_FLOAT)) {
 double a = RFLOAT_VALUE(x);
 double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
 if (isnan(a) || isnan(b)) return Qfalse;
#endif
 if (a == b)
 return Qtrue;
 }
 return Qfalse;
}
 
fdiv(numeric) → float click to toggle source

Returns float / numeric, same as Float#/.

 
 static VALUE
flo_quo(VALUE x, VALUE y)
{
 return num_funcall1(x, '/', y);
}
 
finite? → true or false click to toggle source

Returns true if float is a valid IEEE floating point number, i.e. it is not infinite and Float#nan? is false.

 
 VALUE
rb_flo_is_finite_p(VALUE num)
{
 double value = RFLOAT_VALUE(num);
#ifdef HAVE_ISFINITE
 if (!isfinite(value))
 return Qfalse;
#else
 if (isinf(value) || isnan(value))
 return Qfalse;
#endif
 return Qtrue;
}
 
floor([ndigits]) → integer or float click to toggle source

Returns the largest number less than or equal to float with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.2.floor #=> 1
2.0.floor #=> 2
(-1.2).floor #=> -2
(-2.0).floor #=> -2
1.234567.floor(2) #=> 1.23
1.234567.floor(3) #=> 1.234
1.234567.floor(4) #=> 1.2345
1.234567.floor(5) #=> 1.23456
34567.89.floor(-5) #=> 0
34567.89.floor(-4) #=> 30000
34567.89.floor(-3) #=> 34000
34567.89.floor(-2) #=> 34500
34567.89.floor(-1) #=> 34560
34567.89.floor(0) #=> 34567
34567.89.floor(1) #=> 34567.8
34567.89.floor(2) #=> 34567.89
34567.89.floor(3) #=> 34567.89

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).floor #=> 2 (!)
 
 static VALUE
flo_floor(int argc, VALUE *argv, VALUE num)
{
 double number, f;
 int ndigits = 0;
 if (rb_check_arity(argc, 0, 1)) {
 ndigits = NUM2INT(argv[0]);
 }
 number = RFLOAT_VALUE(num);
 if (number == 0.0) {
 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 }
 if (ndigits > 0) {
 int binexp;
 frexp(number, &binexp);
 if (float_round_overflow(ndigits, binexp)) return num;
 if (number > 0.0 && float_round_underflow(ndigits, binexp))
 return DBL2NUM(0.0);
 f = pow(10, ndigits);
 f = floor(number * f) / f;
 return DBL2NUM(f);
 }
 else {
 num = dbl2ival(floor(number));
 if (ndigits < 0) num = rb_int_floor(num, ndigits);
 return num;
 }
}
 
hash → integer click to toggle source

Returns a hash code for this float.

See also Object#hash.

 
 static VALUE
flo_hash(VALUE num)
{
 return rb_dbl_hash(RFLOAT_VALUE(num));
}
 
infinite? → -1, 1, or nil click to toggle source

Returns nil, -1, or 1 depending on whether the value is finite, -Infinity, or +Infinity.

(0.0).infinite? #=> nil
(-1.0/0.0).infinite? #=> -1
(+1.0/0.0).infinite? #=> 1
 
 VALUE
rb_flo_is_infinite_p(VALUE num)
{
 double value = RFLOAT_VALUE(num);
 if (isinf(value)) {
 return INT2FIX( value < 0 ? -1 : 1 );
 }
 return Qnil;
}
 
inspect() click to toggle source
Alias for: to_s
magnitude → float click to toggle source

Returns the absolute value of float.

(-34.56).abs #=> 34.56
-34.56.abs #=> 34.56
34.56.abs #=> 34.56

Float#magnitude is an alias for Float#abs.

 
 VALUE
rb_float_abs(VALUE flt)
{
 double val = fabs(RFLOAT_VALUE(flt));
 return DBL2NUM(val);
}
 
modulo(other) → float click to toggle source

Returns the modulo after division of float by other.

6543.21.modulo(137) #=> 104.21000000000004
6543.21.modulo(137.24) #=> 92.92999999999961
 
 static VALUE
flo_mod(VALUE x, VALUE y)
{
 double fy;
 if (RB_TYPE_P(y, T_FIXNUM)) {
 fy = (double)FIX2LONG(y);
 }
 else if (RB_TYPE_P(y, T_BIGNUM)) {
 fy = rb_big2dbl(y);
 }
 else if (RB_TYPE_P(y, T_FLOAT)) {
 fy = RFLOAT_VALUE(y);
 }
 else {
 return rb_num_coerce_bin(x, y, '%');
 }
 return DBL2NUM(ruby_float_mod(RFLOAT_VALUE(x), fy));
}
 
nan? → true or false click to toggle source

Returns true if float is an invalid IEEE floating point number.

a = -1.0 #=> -1.0
a.nan? #=> false
a = 0.0/0.0 #=> NaN
a.nan? #=> true
 
 static VALUE
flo_is_nan_p(VALUE num)
{
 double value = RFLOAT_VALUE(num);
 return isnan(value) ? Qtrue : Qfalse;
}
 
negative? → true or false click to toggle source

Returns true if float is less than 0.

 
 static VALUE
flo_negative_p(VALUE num)
{
 double f = RFLOAT_VALUE(num);
 return f < 0.0 ? Qtrue : Qfalse;
}
 
next_float → float click to toggle source

Returns the next representable floating point number.

Float::MAX.next_float and Float::INFINITY.next_float is Float::INFINITY.

Float::NAN.next_float is Float::NAN.

For example:

0.01.next_float #=> 0.010000000000000002
1.0.next_float #=> 1.0000000000000002
100.0.next_float #=> 100.00000000000001
0.01.next_float - 0.01 #=> 1.734723475976807e-18
1.0.next_float - 1.0 #=> 2.220446049250313e-16
100.0.next_float - 100.0 #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.next_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147cp-7 0.010000000000000002
# 0x1.47ae147ae147dp-7 0.010000000000000004
# 0x1.47ae147ae147ep-7 0.010000000000000005
# 0x1.47ae147ae147fp-7 0.010000000000000007
# 0x1.47ae147ae148p-7 0.010000000000000009
# 0x1.47ae147ae1481p-7 0.01000000000000001
# 0x1.47ae147ae1482p-7 0.010000000000000012
# 0x1.47ae147ae1483p-7 0.010000000000000014
# 0x1.47ae147ae1484p-7 0.010000000000000016
# 0x1.47ae147ae1485p-7 0.010000000000000018
# 0x1.47ae147ae1486p-7 0.01000000000000002
# 0x1.47ae147ae1487p-7 0.010000000000000021
# 0x1.47ae147ae1488p-7 0.010000000000000023
# 0x1.47ae147ae1489p-7 0.010000000000000024
# 0x1.47ae147ae148ap-7 0.010000000000000026
# 0x1.47ae147ae148bp-7 0.010000000000000028
# 0x1.47ae147ae148cp-7 0.01000000000000003
# 0x1.47ae147ae148dp-7 0.010000000000000031
# 0x1.47ae147ae148ep-7 0.010000000000000033
f = 0.0
100.times { f += 0.1 }
f #=> 9.99999999999998 # should be 10.0 in the ideal world.
10-f #=> 1.9539925233402755e-14 # the floating point error.
10.0.next_float-10 #=> 1.7763568394002505e-15 # 1 ulp (unit in the last place).
(10-f)/(10.0.next_float-10) #=> 11.0 # the error is 11 ulp.
(10-f)/(10*Float::EPSILON) #=> 8.8 # approximation of the above.
"%a" % 10 #=> "0x1.4p+3"
"%a" % f #=> "0x1.3fffffffffff5p+3" # the last hex digit is 5. 16 - 5 = 11 ulp.
 
 static VALUE
flo_next_float(VALUE vx)
{
 double x, y;
 x = NUM2DBL(vx);
 y = nextafter(x, INFINITY);
 return DBL2NUM(y);
}
 
numerator → integer click to toggle source

Returns the numerator. The result is machine dependent.

n = 0.3.numerator #=> 5404319552844595
d = 0.3.denominator #=> 18014398509481984
n.fdiv(d) #=> 0.3

See also Float#denominator.

 
 static VALUE
float_numerator(VALUE self)
{
 double d = RFLOAT_VALUE(self);
 VALUE r;
 if (isinf(d) || isnan(d))
 return self;
 r = float_to_r(self);
 if (canonicalization && k_integer_p(r)) {
 return r;
 }
 return nurat_numerator(r);
}
 
phase → 0 or float click to toggle source

Returns 0 if the value is positive, pi otherwise.

 
 static VALUE
float_arg(VALUE self)
{
 if (isnan(RFLOAT_VALUE(self)))
 return self;
 if (f_tpositive_p(self))
 return INT2FIX(0);
 return rb_const_get(rb_mMath, id_PI);
}
 
positive? → true or false click to toggle source

Returns true if float is greater than 0.

 
 static VALUE
flo_positive_p(VALUE num)
{
 double f = RFLOAT_VALUE(num);
 return f > 0.0 ? Qtrue : Qfalse;
}
 
prev_float → float click to toggle source

Returns the previous representable floating point number.

(-Float::MAX).prev_float and (-Float::INFINITY).prev_float is -Float::INFINITY.

Float::NAN.prev_float is Float::NAN.

For example:

0.01.prev_float #=> 0.009999999999999998
1.0.prev_float #=> 0.9999999999999999
100.0.prev_float #=> 99.99999999999999
0.01 - 0.01.prev_float #=> 1.734723475976807e-18
1.0 - 1.0.prev_float #=> 1.1102230246251565e-16
100.0 - 100.0.prev_float #=> 1.4210854715202004e-14
f = 0.01; 20.times { printf "%-20a %s\n", f, f.to_s; f = f.prev_float }
#=> 0x1.47ae147ae147bp-7 0.01
# 0x1.47ae147ae147ap-7 0.009999999999999998
# 0x1.47ae147ae1479p-7 0.009999999999999997
# 0x1.47ae147ae1478p-7 0.009999999999999995
# 0x1.47ae147ae1477p-7 0.009999999999999993
# 0x1.47ae147ae1476p-7 0.009999999999999992
# 0x1.47ae147ae1475p-7 0.00999999999999999
# 0x1.47ae147ae1474p-7 0.009999999999999988
# 0x1.47ae147ae1473p-7 0.009999999999999986
# 0x1.47ae147ae1472p-7 0.009999999999999985
# 0x1.47ae147ae1471p-7 0.009999999999999983
# 0x1.47ae147ae147p-7 0.009999999999999981
# 0x1.47ae147ae146fp-7 0.00999999999999998
# 0x1.47ae147ae146ep-7 0.009999999999999978
# 0x1.47ae147ae146dp-7 0.009999999999999976
# 0x1.47ae147ae146cp-7 0.009999999999999974
# 0x1.47ae147ae146bp-7 0.009999999999999972
# 0x1.47ae147ae146ap-7 0.00999999999999997
# 0x1.47ae147ae1469p-7 0.009999999999999969
# 0x1.47ae147ae1468p-7 0.009999999999999967
 
 static VALUE
flo_prev_float(VALUE vx)
{
 double x, y;
 x = NUM2DBL(vx);
 y = nextafter(x, -INFINITY);
 return DBL2NUM(y);
}
 
quo(numeric) → float click to toggle source

Returns float / numeric, same as Float#/.

 
 static VALUE
flo_quo(VALUE x, VALUE y)
{
 return num_funcall1(x, '/', y);
}
 
rationalize([eps]) → rational click to toggle source

Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). If the optional argument eps is not given, it will be chosen automatically.

0.3.rationalize #=> (3/10)
1.333.rationalize #=> (1333/1000)
1.333.rationalize(0.01) #=> (4/3)

See also Float#to_r.

 
 static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
 VALUE e;
 double d = RFLOAT_VALUE(self);
 if (d < 0.0)
 return rb_rational_uminus(float_rationalize(argc, argv, DBL2NUM(-d)));
 rb_scan_args(argc, argv, "01", &e);
 if (argc != 0) {
 return rb_flt_rationalize_with_prec(self, e);
 }
 else {
 return rb_flt_rationalize(self);
 }
}
 
round([ndigits] [, half: mode]) → integer or float click to toggle source

Returns float rounded to the nearest value with a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

1.4.round #=> 1
1.5.round #=> 2
1.6.round #=> 2
(-1.5).round #=> -2
1.234567.round(2) #=> 1.23
1.234567.round(3) #=> 1.235
1.234567.round(4) #=> 1.2346
1.234567.round(5) #=> 1.23457
34567.89.round(-5) #=> 0
34567.89.round(-4) #=> 30000
34567.89.round(-3) #=> 35000
34567.89.round(-2) #=> 34600
34567.89.round(-1) #=> 34570
34567.89.round(0) #=> 34568
34567.89.round(1) #=> 34567.9
34567.89.round(2) #=> 34567.89
34567.89.round(3) #=> 34567.89

If the optional half keyword argument is given, numbers that are half-way between two possible rounded values will be rounded according to the specified tie-breaking mode:

  • :up or nil: round half away from zero (default)

  • :down: round half toward zero

  • :even: round half toward the nearest even number

    2.5.round(half: :up) #=> 3
    2.5.round(half: :down) #=> 2
    2.5.round(half: :even) #=> 2
    3.5.round(half: :up) #=> 4
    3.5.round(half: :down) #=> 3
    3.5.round(half: :even) #=> 4
    (-2.5).round(half: :up) #=> -3
    (-2.5).round(half: :down) #=> -2
    (-2.5).round(half: :even) #=> -2
    
 
 static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
 double number, f, x;
 VALUE nd, opt;
 int ndigits = 0;
 enum ruby_num_rounding_mode mode;
 if (rb_scan_args(argc, argv, "01:", &nd, &opt)) {
 ndigits = NUM2INT(nd);
 }
 mode = rb_num_get_rounding_option(opt);
 number = RFLOAT_VALUE(num);
 if (number == 0.0) {
 return ndigits > 0 ? DBL2NUM(number) : INT2FIX(0);
 }
 if (ndigits < 0) {
 return rb_int_round(flo_to_i(num), ndigits, mode);
 }
 if (ndigits == 0) {
 x = ROUND_CALL(mode, round, (number, 1.0));
 return dbl2ival(x);
 }
 if (isfinite(number)) {
 int binexp;
 frexp(number, &binexp);
 if (float_round_overflow(ndigits, binexp)) return num;
 if (float_round_underflow(ndigits, binexp)) return DBL2NUM(0);
 f = pow(10, ndigits);
 x = ROUND_CALL(mode, round, (number, f));
 return DBL2NUM(x / f);
 }
 return num;
}
 
to_f → self click to toggle source

Since float is already a Float, returns self.

 
 static VALUE
flo_to_f(VALUE num)
{
 return num;
}
 
to_i → integer click to toggle source
to_int → integer

Returns the float truncated to an Integer.

1.2.to_i #=> 1
(-1.2).to_i #=> -1

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).to_i #=> 2 (!)

to_int is an alias for to_i.

 
 static VALUE
flo_to_i(VALUE num)
{
 double f = RFLOAT_VALUE(num);
 if (f > 0.0) f = floor(f);
 if (f < 0.0) f = ceil(f);
 return dbl2ival(f);
}
 
to_int → integer click to toggle source

Returns the float truncated to an Integer.

1.2.to_i #=> 1
(-1.2).to_i #=> -1

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).to_i #=> 2 (!)

to_int is an alias for to_i.

 
 static VALUE
flo_to_i(VALUE num)
{
 double f = RFLOAT_VALUE(num);
 if (f > 0.0) f = floor(f);
 if (f < 0.0) f = ceil(f);
 return dbl2ival(f);
}
 
to_r → rational click to toggle source

Returns the value as a rational.

2.0.to_r #=> (2/1)
2.5.to_r #=> (5/2)
-0.75.to_r #=> (-3/4)
0.0.to_r #=> (0/1)
0.3.to_r #=> (5404319552844595/18014398509481984)

NOTE: 0.3.to_r isn't the same as "0.3".to_r. The latter is equivalent to "3/10".to_r, but the former isn't so.

0.3.to_r == 3/10r #=> false
"0.3".to_r == 3/10r #=> true

See also Float#rationalize.

 
 static VALUE
float_to_r(VALUE self)
{
 VALUE f, n;
 float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
 {
 long ln = FIX2LONG(n);
 if (ln == 0)
 return rb_rational_new1(f);
 if (ln > 0)
 return rb_rational_new1(rb_int_lshift(f, n));
 ln = -ln;
 return rb_rational_new2(f, rb_int_lshift(ONE, INT2FIX(ln)));
 }
#else
 f = rb_int_mul(f, rb_int_pow(INT2FIX(FLT_RADIX), n));
 if (RB_TYPE_P(f, T_RATIONAL))
 return f;
 return rb_rational_new1(f);
#endif
}
 
to_s → string click to toggle source

Returns a string containing a representation of self. As well as a fixed or exponential form of the float, the call may return NaN, Infinity, and -Infinity.

 
 static VALUE
flo_to_s(VALUE flt)
{
 enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
 enum {float_dig = DBL_DIG+1};
 char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
 double value = RFLOAT_VALUE(flt);
 VALUE s;
 char *p, *e;
 int sign, decpt, digs;
 if (isinf(value)) {
 static const char minf[] = "-Infinity";
 const int pos = (value > 0); /* skip "-" */
 return rb_usascii_str_new(minf+pos, strlen(minf)-pos);
 }
 else if (isnan(value))
 return rb_usascii_str_new2("NaN");
 p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
 s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
 if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
 memcpy(buf, p, digs);
 xfree(p);
 if (decpt > 0) {
 if (decpt < digs) {
 memmove(buf + decpt + 1, buf + decpt, digs - decpt);
 buf[decpt] = '.';
 rb_str_cat(s, buf, digs + 1);
 }
 else if (decpt <= DBL_DIG) {
 long len;
 char *ptr;
 rb_str_cat(s, buf, digs);
 rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
 ptr = RSTRING_PTR(s) + len;
 if (decpt > digs) {
 memset(ptr, '0', decpt - digs);
 ptr += decpt - digs;
 }
 memcpy(ptr, ".0", 2);
 }
 else {
 goto exp;
 }
 }
 else if (decpt > -4) {
 long len;
 char *ptr;
 rb_str_cat(s, "0.", 2);
 rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
 ptr = RSTRING_PTR(s);
 memset(ptr += len, '0', -decpt);
 memcpy(ptr -= decpt, buf, digs);
 }
 else {
 exp:
 if (digs > 1) {
 memmove(buf + 2, buf + 1, digs - 1);
 }
 else {
 buf[2] = '0';
 digs++;
 }
 buf[1] = '.';
 rb_str_cat(s, buf, digs + 1);
 rb_str_catf(s, "e%+03d", decpt - 1);
 }
 return s;
}
 
Also aliased as: inspect
truncate([ndigits]) → integer or float click to toggle source

Returns float truncated (toward zero) to a precision of ndigits decimal digits (default: 0).

When the precision is negative, the returned value is an integer with at least ndigits.abs trailing zeros.

Returns a floating point number when ndigits is positive, otherwise returns an integer.

2.8.truncate #=> 2
(-2.8).truncate #=> -2
1.234567.truncate(2) #=> 1.23
34567.89.truncate(-2) #=> 34500

Note that the limited precision of floating point arithmetic might lead to surprising results:

(0.3 / 0.1).truncate #=> 2 (!)
 
 static VALUE
flo_truncate(int argc, VALUE *argv, VALUE num)
{
 if (signbit(RFLOAT_VALUE(num)))
 return flo_ceil(argc, argv, num);
 else
 return flo_floor(argc, argv, num);
}
 
zero? → true or false click to toggle source

Returns true if float is 0.0.

 
 static VALUE
flo_zero_p(VALUE num)
{
 if (RFLOAT_VALUE(num) == 0.0) {
 return Qtrue;
 }
 return Qfalse;
}
 

AltStyle によって変換されたページ (->オリジナル) /