WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

WaveletPsi [wave,x]

gives the wavelet function for the symbolic wavelet wave evaluated at x.

WaveletPsi [wave]

gives the wavelet function as a pure function.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
MaxRecursion  
WorkingPrecision  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page

WaveletPsi [wave,x]

gives the wavelet function for the symbolic wavelet wave evaluated at x.

WaveletPsi [wave]

gives the wavelet function as a pure function.

Details and Options

  • The wavelet function satisfies the recursion equation , where is the scaling function and are the high-pass filter coefficients.
  • A discrete wavelet transform effectively represents a signal in terms of scaled and translated wavelet functions , where .
  • WaveletPsi [wave,x,"Dual"] gives the dual wavelet function for biorthogonal wavelets such as BiorthogonalSplineWavelet and ReverseBiorthogonalSplineWavelet .
  • The dual wavelet function satisfies the recursion equation , where are the dual high-pass filter coefficients.
  • The following options can be used:
  • MaxRecursion 8 number of recursive iterations to use
    WorkingPrecision MachinePrecision precision to use in internal computations

Examples

open all close all

Basic Examples  (3)

Haar wavelet function:

Daubechies wavelet function:

Mexican hat wavelet function:

Scope  (5)

Compute primal wavelet function:

Dual wavelet function:

Wavelet function for discrete wavelets, including HaarWavelet :

DaubechiesWavelet :

SymletWavelet :

CoifletWavelet :

BiorthogonalSplineWavelet :

ReverseBiorthogonalSplineWavelet :

CDFWavelet :

ShannonWavelet :

BattleLemarieWavelet :

MeyerWavelet :

Wavelet function for continuous wavelets, including DGaussianWavelet :

MexicanHatWavelet :

GaborWavelet :

ShannonWavelet :

MorletWavelet :

PaulWavelet :

Multivariate scaling and wavelet functions are products of univariate ones:

Options  (3)

MaxRecursion  (1)

Plot wavelet function using different levels of recursion:

WorkingPrecision  (2)

By default WorkingPrecision->MachinePrecision is used:

Use higher-precision filter computation:

Properties & Relations  (4)

Wavelet function integrates to zero :

satisfies the recursion equation :

Plot the components and the sum of the recursion:

Frequency response for is given by :

The filter is a high-pass filter:

Fourier transform of is given by :

Neat Examples  (1)

Plot translates and dilations of wavelet function:

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

Text

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

CMS

Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.

APA

Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html

BibTeX

@misc{reference.wolfram_2025_waveletpsi, author="Wolfram Research", title="{WaveletPsi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPsi.html}", note=[Accessed: 04-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_waveletpsi, organization={Wolfram Research}, title={WaveletPsi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPsi.html}, note=[Accessed: 04-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /