WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

SpheroidalQSPrime [n,m,γ,z]

gives the derivative with respect to of the angular spheroidal function of the second kind.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Applications  
Possible Issues  
See Also
Tech Notes
Related Guides
History
Cite this Page

SpheroidalQSPrime [n,m,γ,z]

gives the derivative with respect to of the angular spheroidal function of the second kind.

Details

Examples

open all close all

Basic Examples  (4)

Evaluate numerically:

Expansion about the spherical case:

Plot over a subset of the reals:

Series expansion at the origin:

Scope  (22)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute the elementwise values of an array using automatic threading:

Or compute the matrix SpheroidalQSPrime function using MatrixFunction :

Compute average-case statistical intervals using Around :

Specific Values  (5)

Evaluate symbolically:

Find the first positive minimum of SpheroidalQSPrime [4,0,1/2,x]:

The SpheroidalQSPrime function is equal to zero for half-integer parameters:

Different SpheroidalQSPrime types give different symbolic forms:

TraditionalForm formatting:

Visualization  (2)

Plot the SpheroidalQSPrime function for various orders:

Plot the real part of TemplateBox[{1, 0, 1, z}, SpheroidalQSPrime]:

Plot the imaginary part of TemplateBox[{1, 0, 1, z}, SpheroidalQSPrime]:

Function Properties  (2)

TemplateBox[{2, 0, 1, x}, SpheroidalQSPrime] has both singularities and discontinuities for :

SpheroidalQSPrime is neither non-negative nor non-positive:

Differentiation  (2)

First derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z when n=5, m=2 and γ=1:

Integration  (3)

Compute the indefinite integral using Integrate :

Verify the anti-derivative:

Definite integral:

More integrals:

Series Expansions  (2)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

Taylor expansion at a generic point:

Applications  (1)

Plot prolate and oblate versions of the same angular function:

Possible Issues  (1)

Spheroidal functions do not generically evaluate for half-integer values of n:

Tech Notes

Wolfram Research (2007), SpheroidalQSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html.

Text

Wolfram Research (2007), SpheroidalQSPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html.

CMS

Wolfram Language. 2007. "SpheroidalQSPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html.

APA

Wolfram Language. (2007). SpheroidalQSPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html

BibTeX

@misc{reference.wolfram_2025_spheroidalqsprime, author="Wolfram Research", title="{SpheroidalQSPrime}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html}", note=[Accessed: 04-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_spheroidalqsprime, organization={Wolfram Research}, title={SpheroidalQSPrime}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalQSPrime.html}, note=[Accessed: 04-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /