WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

RadonTransform [expr,{x,y},{p,ϕ}]

gives the Radon transform of expr.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Basic Uses  
Gaussian Functions  
Piecewise and Generalized Functions  
Options  
Assumptions  
GenerateConditions  
Applications  
Properties & Relations  
Neat Examples  
See Also
Related Guides
History
Cite this Page

RadonTransform [expr,{x,y},{p,ϕ}]

gives the Radon transform of expr.

Details and Options

  • The Radon transform of a function is defined to be .
  • Geometrically, the Radon transform represents the integral of along a line given in normal form by the equation , with -<p< and -π/2<ϕ<π/2.
  • The following options can be given:
  • Assumptions $Assumptions assumptions on parameters
    GenerateConditions False whether to generate results that involve conditions on parameters
    Method Automatic what method to use
  • In TraditionalForm , RadonTransform is output using TemplateBox[{{f, (, {x, ,, y}, )}, x, y, p, phi}, RadonTransform].

Examples

open all close all

Basic Examples  (1)

Compute the Radon transform of a function:

Plot the function along with the transform:

Scope  (10)

Basic Uses  (2)

Compute the Radon transform of a function for symbolic parameter values:

Use exact values for the parameters:

Use inexact values for the parameters:

Obtain the condition for validity of a Radon transform:

Specify assumptions:

Gaussian Functions  (5)

Radon transform of a circular Gaussian function:

Plot the function along with the transform:

Radon transform of an elliptic Gaussian function:

Plot the function along with the transform:

Product of a polynomial with a Gaussian function:

Product of Hermite polynomials and a Gaussian function:

Products of trigonometric functions with Gaussian functions:

Piecewise and Generalized Functions  (3)

Radon transform of the characteristic function for the unit disk:

Products of polynomials with the characteristic function for the unit disk:

Radon transforms for expressions involving DiracDelta :

Options  (2)

Assumptions  (1)

Specify assumptions:

GenerateConditions  (1)

Generate conditions for the validity of the result:

Applications  (2)

Compute the symbolic Radon transform for the characteristic function of a disk:

Obtain the same result using Radon :

Use the Radon transform to solve a Poisson equation:

Apply RadonTransform to the equation:

Solve the ordinary differential equation using DSolveValue :

Set the arbitrary constants in the solution to 0:

Obtain the solution for the original equation using InverseRadonTransform :

Verify the solution:

Plot the solution:

Properties & Relations  (10)

RadonTransform computes the integral :

Obtain the same result using Integrate :

RadonTransform and InverseRadonTransform are mutual inverses:

RadonTransform is a linear operator:

The shifting property for RadonTransform :

The symmetry property for RadonTransform :

Express the Radon transform of in terms of a unit vector:

Verify the symmetry property:

The homogeneity property for RadonTransform :

Express the Radon transform of in terms of a unit vector:

Verify the homogeneity property:

The scaling property for RadonTransform :

Express the Radon transform of in terms of a unit vector:

Express the Radon transform of in terms of a unit vector:

Verify the scaling property:

RadonTransform of derivatives:

RadonTransform of the Laplacian :

RadonTransform can be computed using Fourier transforms:

Compute the Fourier transform of f in polar coordinates:

Compute the inverse Fourier transform to obtain the Radon transform:

Obtain the same result directly using RadonTransform :

Neat Examples  (1)

Create a table of basic Radon transforms:

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.

Text

Wolfram Research (2017), RadonTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/RadonTransform.html.

CMS

Wolfram Language. 2017. "RadonTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RadonTransform.html.

APA

Wolfram Language. (2017). RadonTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RadonTransform.html

BibTeX

@misc{reference.wolfram_2025_radontransform, author="Wolfram Research", title="{RadonTransform}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/RadonTransform.html}", note=[Accessed: 08-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_radontransform, organization={Wolfram Research}, title={RadonTransform}, year={2017}, url={https://reference.wolfram.com/language/ref/RadonTransform.html}, note=[Accessed: 08-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /