WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

KelvinBei [z]

gives the Kelvin function TemplateBox[{z}, KelvinBei].

KelvinBei [n,z]

gives the Kelvin function TemplateBox[{n, z}, KelvinBei2].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Identities and Simplifications  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

KelvinBei [z]

gives the Kelvin function TemplateBox[{z}, KelvinBei].

KelvinBei [n,z]

gives the Kelvin function TemplateBox[{n, z}, KelvinBei2].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • For positive real values of parameters, TemplateBox[{n, z}, KelvinBei2]=Im(e^(npii)TemplateBox[{n, {z, , {e, ^, {(, {{-, pi}, , {i, /, 4}}, )}}}}, BesselJ]) . For other values, is defined by analytic continuation.
  • KelvinBei [n,z] has a branch cut discontinuity in the complex z plane running from to .
  • KelvinBei [z] is equivalent to KelvinBei [0,z].
  • For certain special arguments, KelvinBei automatically evaluates to exact values.
  • KelvinBei can be evaluated to arbitrary numerical precision.
  • KelvinBei automatically threads over lists.

Examples

open all close all

Basic Examples  (6)

Evaluate numerically:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity :

Series expansion at a singular point:

Scope  (37)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix KelvinBei function using MatrixFunction :

Specific Values  (3)

Values at zero:

Find the positive minimum of KelvinBei [0,x]:

For half-integer orders, KelvinBei evaluates to elementary functions:

Visualization  (3)

Plot the KelvinBei function for integer () and half-integer () orders:

Plot the real part of :

Plot the imaginary part of :

Plot the real part of :

Plot the imaginary part of :

Function Properties  (12)

The real domain of TemplateBox[{0, x}, KelvinBei2]:

The complex domain of TemplateBox[{0, x}, KelvinBei2]:

TemplateBox[{{-, {1, /, 2}}, x}, KelvinBei2] is defined for all real values greater than 0:

The complex domain is the whole plane except :

Function range of TemplateBox[{0, x}, KelvinBei2]:

Approximate function range of TemplateBox[{1, x}, KelvinBei2]:

TemplateBox[{0, x}, KelvinBei2] is an even function:

TemplateBox[{1, x}, KelvinBei2] is an odd function:

TemplateBox[{0, z}, KelvinBei2] is an analytic function of z:

KelvinBei is neither non-decreasing nor non-increasing:

KelvinBei is not injective:

KelvinBei is neither non-negative nor non-positive:

KelvinBei has no singularities or discontinuities:

KelvinBei is neither convex nor concave:

TraditionalForm formatting:

Differentiation  (3)

The first derivative with respect to z:

The first derivative with respect to z when n=1:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z:

Formula for the ^(th) derivative with respect to z:

Integration  (3)

Compute the indefinite integral using Integrate :

Verify the anti-derivative:

The definite integral:

More integrals:

Series Expansions  (5)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

The general term in the series expansion using SeriesCoefficient :

Find the series expansion at Infinity :

Find series expansion for an arbitrary symbolic direction :

The Taylor expansion at a generic point:

Function Identities and Simplifications  (2)

Functional identity:

Recurrence relations:

Generalizations & Extensions  (1)

KelvinBei can be applied to a power series:

Applications  (3)

Solve the Kelvin differential equation:

Plot the resistance of a wire with circular cross section versus AC frequency (skin effect):

For some specific values, HypergeometricPFQRegularized is represented with KelvinBei :

Properties & Relations  (4)

Use FullSimplify to simplify expressions involving Kelvin functions:

Use FunctionExpand to expand Kelvin functions of half-integer orders:

Integrate expressions involving Kelvin functions:

KelvinBei can be represented in terms of MeijerG :

Possible Issues  (1)

The oneargument form evaluates to the two-argument form:

See Also

KelvinBer   KelvinKei   BesselJ

Tech Notes

Wolfram Research (2007), KelvinBei, Wolfram Language function, https://reference.wolfram.com/language/ref/KelvinBei.html.

Text

Wolfram Research (2007), KelvinBei, Wolfram Language function, https://reference.wolfram.com/language/ref/KelvinBei.html.

CMS

Wolfram Language. 2007. "KelvinBei." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/KelvinBei.html.

APA

Wolfram Language. (2007). KelvinBei. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/KelvinBei.html

BibTeX

@misc{reference.wolfram_2025_kelvinbei, author="Wolfram Research", title="{KelvinBei}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/KelvinBei.html}", note=[Accessed: 06-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_kelvinbei, organization={Wolfram Research}, title={KelvinBei}, year={2007}, url={https://reference.wolfram.com/language/ref/KelvinBei.html}, note=[Accessed: 06-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /