WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center
Wolfram Language Home Page »

HilbertMatrix

HilbertMatrix [n]

gives the n×n Hilbert matrix with elements of the form .

HilbertMatrix [{m,n}]

gives the m×n Hilbert matrix.

Details and Options

Examples

open allclose all

Basic Examples  (2)

3×3 Hilbert matrix:

3×5 Hilbert matrix:

Scope  (2)

Hilbert matrix with machine-number entries:

Hilbert matrix with 20-digit precision entries:

Options  (2)

TargetStructure  (1)

Return the Hilbert matrix as a dense matrix:

Return the Hilbert matrix as a Cauchy matrix:

Return the Hilbert matrix as a Hankel matrix:

WorkingPrecision  (1)

A Hilbert matrix with machine-number entries:

A Hilbert matrix with 24-digit precision entries:

Applications  (2)

Hilbert matrices are often used to compare numerical algorithms:

Compare methods for solving for known :

Solve using :

Solve using LinearSolve with Gaussian elimination:

Solve using LinearSolve using a Cholesky decomposition:

Solve using LeastSquares :

Compare errors:

An expression for the Legendre polynomial in terms of the Hilbert matrix:

Verify the expression for the first few cases:

Properties & Relations  (5)

Square Hilbert matrices are real symmetric and positive definite:

Hilbert matrices can be expressed in terms of HankelMatrix :

Compare with HilbertMatrix :

Hilbert matrices can be expressed in terms of CauchyMatrix :

Compare with HilbertMatrix :

The smallest eigenvalue of a square Hilbert matrix decreases exponentially with n:

The model is a reasonable predictor of magnitude for larger values of n:

The condition number increases exponentially with n:

The 2-norm condition number is the ratio of largest to smallest eigenvalue due to symmetry:

Neat Examples  (4)

The determinant of the Hilbert matrix can be expressed in terms of the Barnes G-function:

Verify the formula for the first few cases:

A function for computing the inverse of the Hilbert matrix:

Verify the inverse for the first few cases:

A function for computing the Cholesky decomposition of the Hilbert matrix:

Verify the Cholesky decomposition for the first few cases:

Visualize the decay of the entries of the Hilbert matrix:

See Also

HankelMatrix   CauchyMatrix   ToeplitzMatrix   Inverse   LegendreP

History

Introduced in 2007 (6.0) | Updated in 2023 (13.3)

Wolfram Research (2007), HilbertMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/HilbertMatrix.html (updated 2023).

Text

Wolfram Research (2007), HilbertMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/HilbertMatrix.html (updated 2023).

CMS

Wolfram Language. 2007. "HilbertMatrix." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/HilbertMatrix.html.

APA

Wolfram Language. (2007). HilbertMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HilbertMatrix.html

BibTeX

@misc{reference.wolfram_2025_hilbertmatrix, author="Wolfram Research", title="{HilbertMatrix}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/HilbertMatrix.html}", note=[Accessed: 10-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_hilbertmatrix, organization={Wolfram Research}, title={HilbertMatrix}, year={2023}, url={https://reference.wolfram.com/language/ref/HilbertMatrix.html}, note=[Accessed: 10-April-2025 ]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /