WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

GegenbauerC [n,m,x]

gives the Gegenbauer polynomial TemplateBox[{n, m, x}, GegenbauerC].

GegenbauerC [n,x]

gives the renormalized form TemplateBox[{{TemplateBox[{n, m, x}, GegenbauerC], /, m}, m, 0}, Limit2Arg].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Integration  
Series Expansions  
Function Identities and Simplifications  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

GegenbauerC [n,m,x]

gives the Gegenbauer polynomial TemplateBox[{n, m, x}, GegenbauerC].

GegenbauerC [n,x]

gives the renormalized form TemplateBox[{{TemplateBox[{n, m, x}, GegenbauerC], /, m}, m, 0}, Limit2Arg].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • Explicit polynomials are given for integer n and for any m.
  • TemplateBox[{n, m, x}, GegenbauerC] satisfies the differential equation .
  • The Gegenbauer polynomials are orthogonal on the interval with weight function , corresponding to integration over a unit hypersphere.
  • For certain special arguments, GegenbauerC automatically evaluates to exact values.
  • GegenbauerC can be evaluated to arbitrary numerical precision.
  • GegenbauerC automatically threads over lists.
  • GegenbauerC [n,0,x] is always zero.
  • GegenbauerC [n,m,z] has a branch cut discontinuity in the complex z plane running from to .
  • GegenbauerC can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (7)

Evaluate numerically:

Compute the 10^(th) Gegenbauer polynomial:

Compute the 10^(th) renormalized Gegenbauer polynomial:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Asymptotic expansion at Infinity :

Asymptotic expansion at a singular point:

Scope  (44)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number input:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix GegenbauerC function using MatrixFunction :

Specific Values  (8)

Values of GegenbauerC at fixed points:

Simple cases give exact symbolic results:

GegenbauerC for symbolic n:

Values at zero:

Find the first positive maximum of GegenbauerC [10,x ]:

Compute the associated GegenbauerC [7,x] polynomial:

Compute the associated GegenbauerC [1/2,x] polynomial for half-integer n:

Different GegenbauerC types give different symbolic forms:

Visualization  (4)

Plot the GegenbauerC function for various orders:

Plot the real part of :

Plot the imaginary part of :

Plot as real parts of two parameters vary:

Types 2 and 3 of GegenbauerC function have different branch cut structures:

Function Properties  (14)

Domain of GegenbauerC of integer orders:

The range for GegenbauerC of integer orders:

The range for complex values is the whole plane:

Gegenbauer polynomial of an odd order is odd:

Gegenbauer polynomial of an even order is even:

GegenbauerC threads elementwise over lists:

GegenbauerC has the mirror property :

Gegenbauer polynomials are analytic:

However, the GegenbauerC function is generally not analytic for noninteger parameters:

Nor is it meromorphic:

TemplateBox[{2, x}, GegenbauerC2] is neither non-decreasing nor non-increasing:

TemplateBox[{2, x}, GegenbauerC2] is not injective:

TemplateBox[{2, x}, GegenbauerC2] is not surjective:

TemplateBox[{2, x}, GegenbauerC2] is neither non-negative nor non-positive:

TemplateBox[{n, x}, GegenbauerC2] has singularities or discontinuities when is not an integer and :

TemplateBox[{n, m, x}, GegenbauerC] has additional singularities when is noninteger:

TemplateBox[{2, x}, GegenbauerC2] is convex:

TraditionalForm formatting:

Differentiation  (3)

First derivatives with respect to x:

Higher derivatives with respect to x:

Plot the higher derivatives with respect to x when n=10 and m=1/3:

Formula for the ^(th) derivative with respect to x:

Integration  (3)

Compute the indefinite integral using Integrate :

Verify the anti-derivative:

Definite integral:

More integrals:

Series Expansions  (2)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

Taylor expansion at a generic point:

Function Identities and Simplifications  (4)

GegenbauerC is a special case of JacobiP :

Derivative identity of GegenbauerC :

Generating function of Gegenbauer polynomials:

Recurrence relations:

Generalizations & Extensions  (2)

Apply GegenbauerC to a power series:

GegenbauerC can deal with real-valued intervals:

Applications  (3)

Eigenfunctions of the angular part of the four-dimensional Laplace operator:

Radial part of the hydrogen atom eigenfunction in momentum representation:

In an n-point GaussLobatto quadrature rule, the values of the two extreme nodes are fixed, and the other n-2 nodes are computed from the roots of a certain Gegenbauer polynomial. Compute the nodes and weights of an n-point GaussLobatto quadrature rule:

Use the n-point GaussLobatto quadrature rule to numerically evaluate an integral:

Compare the result of the GaussLobatto quadrature with the result from NIntegrate :

Properties & Relations  (5)

Use FunctionExpand to expand GegenbauerC into other functions:

GegenbauerC can be represented as a DifferenceRoot :

General term in the series expansion of GegenbauerC :

The generating function for GegenbauerC :

Define an inner product on functions using Integrate :

Construct an orthonormal basis using Orthogonalize :

This inner product produces the GegenbauerC polynomials:

Possible Issues  (1)

Cancellations in the polynomial form may lead to inaccurate numerical results:

Evaluate the function directly:

Tech Notes

History

Introduced in 1988 (1.0) | Updated in 2021 (13.0) 2022 (13.1)

Wolfram Research (1988), GegenbauerC, Wolfram Language function, https://reference.wolfram.com/language/ref/GegenbauerC.html (updated 2022).

Text

Wolfram Research (1988), GegenbauerC, Wolfram Language function, https://reference.wolfram.com/language/ref/GegenbauerC.html (updated 2022).

CMS

Wolfram Language. 1988. "GegenbauerC." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/GegenbauerC.html.

APA

Wolfram Language. (1988). GegenbauerC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GegenbauerC.html

BibTeX

@misc{reference.wolfram_2025_gegenbauerc, author="Wolfram Research", title="{GegenbauerC}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/GegenbauerC.html}", note=[Accessed: 06-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_gegenbauerc, organization={Wolfram Research}, title={GegenbauerC}, year={2022}, url={https://reference.wolfram.com/language/ref/GegenbauerC.html}, note=[Accessed: 06-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /