GegenbauerC [n,m,x]
gives the Gegenbauer polynomial TemplateBox[{n, m, x}, GegenbauerC].
GegenbauerC [n,x]
gives the renormalized form TemplateBox[{{TemplateBox[{n, m, x}, GegenbauerC], /, m}, m, 0}, Limit2Arg].
GegenbauerC
GegenbauerC [n,m,x]
gives the Gegenbauer polynomial TemplateBox[{n, m, x}, GegenbauerC].
GegenbauerC [n,x]
gives the renormalized form TemplateBox[{{TemplateBox[{n, m, x}, GegenbauerC], /, m}, m, 0}, Limit2Arg].
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- Explicit polynomials are given for integer n and for any m.
- TemplateBox[{n, m, x}, GegenbauerC] satisfies the differential equation .
- The Gegenbauer polynomials are orthogonal on the interval with weight function , corresponding to integration over a unit hypersphere.
- For certain special arguments, GegenbauerC automatically evaluates to exact values.
- GegenbauerC can be evaluated to arbitrary numerical precision.
- GegenbauerC automatically threads over lists.
- GegenbauerC [n,0,x] is always zero.
- GegenbauerC [n,m,z] has a branch cut discontinuity in the complex z plane running from to .
- GegenbauerC can be used with Interval and CenteredInterval objects. »
Examples
open all close allBasic Examples (7)
Evaluate numerically:
Compute the 10^(th) Gegenbauer polynomial:
Compute the 10^(th) renormalized Gegenbauer polynomial:
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Asymptotic expansion at Infinity :
Asymptotic expansion at a singular point:
Scope (44)
Numerical Evaluation (6)
Evaluate numerically:
Evaluate to high precision:
The precision of the output tracks the precision of the input:
Complex number input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around :
Compute the elementwise values of an array:
Or compute the matrix GegenbauerC function using MatrixFunction :
Specific Values (8)
Values of GegenbauerC at fixed points:
Simple cases give exact symbolic results:
GegenbauerC for symbolic n:
Values at zero:
Find the first positive maximum of GegenbauerC [10,x ]:
Compute the associated GegenbauerC [7,x] polynomial:
Compute the associated GegenbauerC [1/2,x] polynomial for half-integer n:
Different GegenbauerC types give different symbolic forms:
Visualization (4)
Plot the GegenbauerC function for various orders:
Plot the real part of :
Plot the imaginary part of :
Plot as real parts of two parameters vary:
Types 2 and 3 of GegenbauerC function have different branch cut structures:
Function Properties (14)
Domain of GegenbauerC of integer orders:
The range for GegenbauerC of integer orders:
The range for complex values is the whole plane:
Gegenbauer polynomial of an odd order is odd:
Gegenbauer polynomial of an even order is even:
GegenbauerC threads elementwise over lists:
GegenbauerC has the mirror property :
Gegenbauer polynomials are analytic:
However, the GegenbauerC function is generally not analytic for noninteger parameters:
Nor is it meromorphic:
TemplateBox[{2, x}, GegenbauerC2] is neither non-decreasing nor non-increasing:
TemplateBox[{2, x}, GegenbauerC2] is not injective:
TemplateBox[{2, x}, GegenbauerC2] is not surjective:
TemplateBox[{2, x}, GegenbauerC2] is neither non-negative nor non-positive:
TemplateBox[{n, x}, GegenbauerC2] has singularities or discontinuities when is not an integer and :
TemplateBox[{n, m, x}, GegenbauerC] has additional singularities when is noninteger:
TemplateBox[{2, x}, GegenbauerC2] is convex:
TraditionalForm formatting:
Differentiation (3)
First derivatives with respect to x:
Higher derivatives with respect to x:
Plot the higher derivatives with respect to x when n=10 and m=1/3:
Formula for the ^(th) derivative with respect to x:
Integration (3)
Compute the indefinite integral using Integrate :
Verify the anti-derivative:
Definite integral:
More integrals:
Series Expansions (2)
Find the Taylor expansion using Series :
Plots of the first three approximations around :
Taylor expansion at a generic point:
Function Identities and Simplifications (4)
GegenbauerC is a special case of JacobiP :
Derivative identity of GegenbauerC :
Generating function of Gegenbauer polynomials:
Recurrence relations:
Generalizations & Extensions (2)
Apply GegenbauerC to a power series:
GegenbauerC can deal with real-valued intervals:
Applications (3)
Eigenfunctions of the angular part of the four-dimensional Laplace operator:
Radial part of the hydrogen atom eigenfunction in momentum representation:
In an n-point Gauss–Lobatto quadrature rule, the values of the two extreme nodes are fixed, and the other n-2 nodes are computed from the roots of a certain Gegenbauer polynomial. Compute the nodes and weights of an n-point Gauss–Lobatto quadrature rule:
Use the n-point Gauss–Lobatto quadrature rule to numerically evaluate an integral:
Compare the result of the Gauss–Lobatto quadrature with the result from NIntegrate :
Properties & Relations (5)
Use FunctionExpand to expand GegenbauerC into other functions:
GegenbauerC can be represented as a DifferenceRoot :
General term in the series expansion of GegenbauerC :
The generating function for GegenbauerC :
Define an inner product on functions using Integrate :
Construct an orthonormal basis using Orthogonalize :
This inner product produces the GegenbauerC polynomials:
Possible Issues (1)
Cancellations in the polynomial form may lead to inaccurate numerical results:
Evaluate the function directly:
See Also
Tech Notes
Related Guides
Related Links
History
Introduced in 1988 (1.0) | Updated in 2021 (13.0) ▪ 2022 (13.1)
Text
Wolfram Research (1988), GegenbauerC, Wolfram Language function, https://reference.wolfram.com/language/ref/GegenbauerC.html (updated 2022).
CMS
Wolfram Language. 1988. "GegenbauerC." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/GegenbauerC.html.
APA
Wolfram Language. (1988). GegenbauerC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GegenbauerC.html
BibTeX
@misc{reference.wolfram_2025_gegenbauerc, author="Wolfram Research", title="{GegenbauerC}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/GegenbauerC.html}", note=[Accessed: 06-January-2026]}
BibLaTeX
@online{reference.wolfram_2025_gegenbauerc, organization={Wolfram Research}, title={GegenbauerC}, year={2022}, url={https://reference.wolfram.com/language/ref/GegenbauerC.html}, note=[Accessed: 06-January-2026]}