WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

n!!

gives the double factorial of n.

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Show More Show More
Function Properties  
Differentiation  
Series Expansions  
Function Identities and Simplifications  
Generalizations & Extensions  
Applications  
Properties & Relations  
Possible Issues  
Neat Examples  
See Also
Tech Notes
Related Guides
Related Links
History
Cite this Page

n!!

gives the double factorial of n.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • .
  • n!! is a product of even numbers for n even, and odd numbers for n odd.
  • Factorial2 can be evaluated to arbitrary numerical precision.
  • Factorial2 automatically threads over lists.
  • Factorial2 can be used with Interval and CenteredInterval objects. »

Examples

open all close all

Basic Examples  (7)

Evaluate at integer values:

Evaluate at real values:

Plot over a subset of the reals:

Plot over a subset of the complexes:

Series expansion at the origin:

Series expansion at Infinity :

Series expansion at a singular point:

Scope  (30)

Numerical Evaluation  (6)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Or compute average-case statistical intervals using Around :

Compute the elementwise values of an array:

Or compute the matrix Factorial2 function using MatrixFunction :

Specific Values  (3)

Values of Factorial2 at fixed points:

Values at zero:

Find the first positive maximum of Factorial2 [x]:

Visualization  (2)

Plot the Factorial2 function:

Plot the real part of :

Plot the imaginary part of :

Function Properties  (10)

Real domain of the double factorial:

Complex domain:

Double factorial has the mirror property :

Factorial2 threads elementwise over lists:

Factorial2 is not an analytic function:

However, it is meromorphic:

Factorial2 is neither nondecreasing nor nonincreasing:

Factorial2 is not injective:

Factorial2 is not surjective:

Factorial2 is neither non-negative nor non-positive:

Factorial2 has both singularity and discontinuity for z-2:

Factorial2 is neither convex nor concave:

Differentiation  (2)

First derivative with respect to z:

Higher derivatives with respect to z:

Plot the higher derivatives with respect to z:

Series Expansions  (4)

Find the Taylor expansion using Series :

Plots of the first three approximations around :

Find the series expansion at Infinity :

Find series expansion for an arbitrary symbolic direction :

Taylor expansion at a generic point:

Function Identities and Simplifications  (3)

Functional identities:

Recurrence relation:

Relationship between Factorial and Factorial2 on the integers:

Generalizations & Extensions  (3)

Infinite arguments give symbolic results:

Series expansion at poles:

Series expansion at infinity (generalized Stirling approximation):

Applications  (5)

Plot of the absolute value of the double factorial in the complex plane:

An infinite series for in terms of the factorial and double factorial:

Calculate the first 30 digits of using this series:

Compare with numerically evaluating Pi :

Verify an expression for the Catalan numbers in terms of double factorials:

For an odd prime, a generalization of Wilson's theorem states that TemplateBox[{{{{(, {p, -, 1}, )}, !!}, =, {G, (, {p, +, 1}, )}}, p}, Mod]. Verify for the first few odd primes:

A determinantal representation for the odd double factorials:

Properties & Relations  (8)

Use FunctionExpand to express the double factorial in terms of the Gamma function:

Use FullSimplify to simplify expressions involving double factorials:

Sums involving Factorial2 :

Generating function:

Recover the original power series:

Products involving the double factorial:

Factorial2 can be represented as a DifferenceRoot :

FindSequenceFunction can recognize the Factorial2 sequence:

The exponential generating function for Factorial2 :

Possible Issues  (3)

Large arguments can give results too large to be computed explicitly, even approximately:

Smaller values work:

Machine-number inputs can give highprecision results:

To compute a repeated factorial, use instead of :

Neat Examples  (3)

Plot Factorial2 at infinity:

Find the numbers of digits 0 through 9 in 10000!!:

Plot the ratio of doubled factorials over double factorial:

See Also

Factorial   Gamma   Pochhammer

Function Repository: MultiFactorial

Tech Notes

History

Introduced in 1988 (1.0) | Updated in 2021 (13.0) 2022 (13.1)

Wolfram Research (1988), Factorial2, Wolfram Language function, https://reference.wolfram.com/language/ref/Factorial2.html (updated 2022).

Text

Wolfram Research (1988), Factorial2, Wolfram Language function, https://reference.wolfram.com/language/ref/Factorial2.html (updated 2022).

CMS

Wolfram Language. 1988. "Factorial2." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/Factorial2.html.

APA

Wolfram Language. (1988). Factorial2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Factorial2.html

BibTeX

@misc{reference.wolfram_2025_factorial2, author="Wolfram Research", title="{Factorial2}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/Factorial2.html}", note=[Accessed: 04-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_factorial2, organization={Wolfram Research}, title={Factorial2}, year={2022}, url={https://reference.wolfram.com/language/ref/Factorial2.html}, note=[Accessed: 04-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /