WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

CoulombH2 [l,η,r]

gives the incoming irregular Coulomb wavefunction TemplateBox[{l, eta, r}, CoulombH2].

Details
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Numerical Evaluation  
Specific Values  
Visualization  
Function Properties  
Series Expansions  
Function Representations  
Properties & Relations  
See Also
Related Guides
History
Cite this Page

CoulombH2 [l,η,r]

gives the incoming irregular Coulomb wavefunction TemplateBox[{l, eta, r}, CoulombH2].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • CoulombH2 [l,η,r] is a solution of the ordinary differential equation .
  • CoulombH2 [l,η,r] is proportional to for large .
  • CoulombH2 [l,η,r] has a regular singularity at .
  • CoulombH2 has a branch cut discontinuity in the complex plane running from to .
  • For certain special arguments, CoulombH2 automatically evaluates to exact values.
  • CoulombH2 can be evaluated to arbitrary numerical precision.
  • CoulombH2 automatically threads over lists.
  • CoulombH2 can be used with CenteredInterval objects. »

Examples

open all close all

Basic Examples  (5)

Evaluate numerically:

Evaluate to arbitrary precision:

CoulombH2 is a linear combination of the CoulombG and CoulombF functions:

Complex plot:

Symbolic evaluation for special parameters:

Asymptotic behavior at large radius:

Scope  (18)

Numerical Evaluation  (5)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

CoulombH2 can be used with CenteredInterval objects:

Specific Values  (3)

Limiting value at the origin:

For a zero value of the parameter η, CoulombH2 reduces to a spherical Hankel function:

Find the first positive zero of the real part of CoulombH2 :

Visualization  (2)

Plot the real and imaginary parts of CoulombH2 :

Plot the real part of TemplateBox[{2, 0, z}, CoulombH2]:

Plot the imaginary part of TemplateBox[{2, 0, z}, CoulombH2]:

Function Properties  (6)

Function domain of CoulombH2 :

CoulombH2 [2,0,x] is not injective over complexes:

CoulombH2 [2,0,x] is neither non-negative nor non-positive:

CoulombH2 [2,0,x] has both singularities and discontinuities:

CoulombH2 is neither convex nor concave:

TraditionalForm formatting:

Series Expansions  (1)

Find the Taylor expansion using Series at zero and at infinity:

Plots of the first three approximations for CoulombH1 around :

Function Representations  (1)

Relations with other Coulomb functions:

Properties & Relations  (1)

CoulombH2 is proportional to WhittakerW in some region of the complex plane:

However, the stated definition has a branch cut at , while the built-in CoulombH2 has a branch cut at :

Wolfram Research (2021), CoulombH2, Wolfram Language function, https://reference.wolfram.com/language/ref/CoulombH2.html (updated 2023).

Text

Wolfram Research (2021), CoulombH2, Wolfram Language function, https://reference.wolfram.com/language/ref/CoulombH2.html (updated 2023).

CMS

Wolfram Language. 2021. "CoulombH2." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/CoulombH2.html.

APA

Wolfram Language. (2021). CoulombH2. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoulombH2.html

BibTeX

@misc{reference.wolfram_2025_coulombh2, author="Wolfram Research", title="{CoulombH2}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/CoulombH2.html}", note=[Accessed: 03-January-2026]}

BibLaTeX

@online{reference.wolfram_2025_coulombh2, organization={Wolfram Research}, title={CoulombH2}, year={2023}, url={https://reference.wolfram.com/language/ref/CoulombH2.html}, note=[Accessed: 03-January-2026]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /