WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

ConvexHullMesh [{p1,p2,}]

gives a BoundaryMeshRegion representing the convex hull from the points p1, p2, .

ConvexHullMesh [mreg]

gives the convex hull of the mesh region mreg.

Details and Options
Details and Options Details and Options
Examples  
Basic Examples  
Scope  
Options  
MeshCellHighlight  
MeshCellLabel  
MeshCellMarker  
MeshCellShapeFunction  
MeshCellStyle  
PlotTheme  
Applications  
Properties & Relations  
Possible Issues  
See Also
Related Guides
History
Cite this Page

ConvexHullMesh [{p1,p2,}]

gives a BoundaryMeshRegion representing the convex hull from the points p1, p2, .

ConvexHullMesh [mreg]

gives the convex hull of the mesh region mreg.

Details and Options

  • ConvexHullMesh is also known as convex envelope or convex closure.
  • The convex hull mesh is the smallest convex set that includes the points pi.
  • The convex hull boundary consists of points in 1D, line segments in 2D, and convex polygons in 3D.
  • ConvexHullMesh takes the same options as BoundaryMeshRegion .

Examples

open all close all

Basic Examples  (3)

A 1D convex hull mesh:

The region is the smallest convex region that includes the points:

A 2D convex hull mesh:

The region is the smallest convex region that includes the points:

A 3D convex hull mesh:

The region is the smallest convex region that includes the points:

Scope  (3)

Create a 1D convex hull mesh from a set of points:

Basic properties:

Convex hull meshes are bounded:

Convex hull meshes are full dimensional:

Find its area and centroid:

Test for point membership:

Find the nearest point and its distance:

Create a 2D convex hull mesh from a set of points:

Basic properties:

Convex hull meshes are bounded:

Convex hull meshes are full dimensional:

Find its area and centroid:

Test for point membership:

Find the nearest point and its distance:

Create a 3D convex hull mesh from a set of points:

Basic properties:

Convex hull meshes are bounded:

Convex hull meshes are full dimensional:

Find its volume and centroid:

Find its surface area:

Find the nearest point and its distance:

Options  (13)

MeshCellHighlight  (3)

MeshCellHighlight allows you to specify highlighting for parts of a ConvexHullMesh :

By making faces transparent, the internal structure of a 3D ConvexHullMesh can be seen:

Individual cells can be highlighted using their cell index:

Or by the cell itself:

MeshCellLabel  (2)

MeshCellLabel can be used to label parts of a ConvexHullMesh :

Individual cells can be labeled using their cell index:

Or by the cell itself:

MeshCellMarker  (1)

MeshCellMarker can be used to assign values to parts of a ConvexHullMesh :

Use MeshCellLabel to show the markers:

MeshCellShapeFunction  (2)

MeshCellShapeFunction allows you to specify functions for parts of a ConvexHullMesh :

Individual cells can be drawn using their cell index:

Or by the cell itself:

MeshCellStyle  (3)

MeshCellStyle allows you to specify styling for parts of a ConvexHullMesh :

By making faces transparent, the internal structure of a 3D ConvexHullMesh can be seen:

Individual cells can be highlighted using their cell index:

Or by the cell itself:

PlotTheme  (2)

Use a theme with grid lines and a legend:

Use a theme to draw a wireframe:

Applications  (2)

The convex hull of a compound of five tetrahedra is a dodecahedron:

Compute the convex hull of a cow:

Visualize convex hull and cow:

Properties & Relations  (3)

ConvexHullMesh is effectively the BoundaryMesh of a DelaunayMesh :

In 3D:

Use DelaunayMesh to get a Delaunay triangulation of the interior of the convex hull:

Use TriangulateMesh to control the triangulation of the interior:

Possible Issues  (1)

ConvexHullMesh returns fulldimensional mesh regions only:

Use ConvexHullRegion to get the convex hull:

Wolfram Research (2014), ConvexHullMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/ConvexHullMesh.html (updated 2020).

Text

Wolfram Research (2014), ConvexHullMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/ConvexHullMesh.html (updated 2020).

CMS

Wolfram Language. 2014. "ConvexHullMesh." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/ConvexHullMesh.html.

APA

Wolfram Language. (2014). ConvexHullMesh. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ConvexHullMesh.html

BibTeX

@misc{reference.wolfram_2025_convexhullmesh, author="Wolfram Research", title="{ConvexHullMesh}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/ConvexHullMesh.html}", note=[Accessed: 05-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_convexhullmesh, organization={Wolfram Research}, title={ConvexHullMesh}, year={2020}, url={https://reference.wolfram.com/language/ref/ConvexHullMesh.html}, note=[Accessed: 05-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /