WOLFRAM

Enable JavaScript to interact with content and submit forms on Wolfram websites. Learn how
Wolfram Language & System Documentation Center

MaximumSpanningTree[g]

uses Kruskal's algorithm to find a maximum spanning tree of graph g.

Details and Options
Details and Options Details and Options
See Also
Tech Notes
Related Guides
Cite this Page
Combinatorica`
Combinatorica`

MaximumSpanningTree

As of Version 10, most of the functionality of the Combinatorica package is built into the Wolfram System. »

MaximumSpanningTree[g]

uses Kruskal's algorithm to find a maximum spanning tree of graph g.

Details and Options

Wolfram Research (2012), MaximumSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

Text

Wolfram Research (2012), MaximumSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

CMS

Wolfram Language. 2012. "MaximumSpanningTree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html.

APA

Wolfram Language. (2012). MaximumSpanningTree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html

BibTeX

@misc{reference.wolfram_2025_maximumspanningtree, author="Wolfram Research", title="{MaximumSpanningTree}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html}", note=[Accessed: 04-December-2025]}

BibLaTeX

@online{reference.wolfram_2025_maximumspanningtree, organization={Wolfram Research}, title={MaximumSpanningTree}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumSpanningTree.html}, note=[Accessed: 04-December-2025]}

Top [フレーム]

AltStyle によって変換されたページ (->オリジナル) /