π The NumPy 1.16.6 release fixes bugs reported against the 1.16.5 release,
π and also backports several enhancements from master that seem
π appropriate for a release series that is the last to support Python 2.7.
The wheels on PyPI are linked with OpenBLAS v0.3.7, which should fix
errors on Skylake series cpus.
π Downstream developers building this release should use Cython >= 0.29.2
π and, if using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python
π versions are 2.7 and 3.5-3.7.
np.testing.utils functions have been updated from 1.19.0-dev0.assert_array_compare function to additional types.@) to work with object arrays.π This is an enhancement that was added in NumPy 1.17 and seems reasonable
π to include in the LTS 1.16 release series.
@) for boolean typesBooleans were being treated as integers rather than booleans, which was
a regression from previous behavior.
β
Error messages from array comparison tests such as
β
testing.assert_allclose now include "max absolute difference" and
"max relative difference," in addition to the previous "mismatch"
β‘οΈ percentage. This information makes it easier to update absolute and
relative error tolerances.
π A total of 10 people contributed to this release.
π A total of 14 pull requests were merged for this release.
4e224331023d95e98074d629b79cd4af numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
d3a48c10422909a5610b42380ed8ddc6 numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
6896018676021f6cff25abb30d9da143 numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
c961575405015b018a497e8f90db5e38 numpy-1.16.6-cp27-cp27m-win32.whl
8fa39acea08658ca355005c07e15f06f numpy-1.16.6-cp27-cp27m-win_amd64.whl
8802bee0140fd50aecddab0141d0eb82 numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
2f9761f243249d33867f86c10c549dfa numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
171a699d84b6ec8ac699627d606890e0 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
7185860b022aa72cd9abb112b2d2b6cf numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
33f35e1b39f572ca98e697b7054fffd1 numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
2ec010ba75c0ac5602e1dbf7fe01ddbf numpy-1.16.6-cp35-cp35m-win32.whl
88c6c5e1f531e32f65f9f9437045f6f5 numpy-1.16.6-cp35-cp35m-win_amd64.whl
751f8ea2353e73bb3440f241ebad6c5d numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
819af6ec8c90e8209471ecbc6fc47b95 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
56ab65e9d3bac5f502507d198634e675 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
88d4ed4565d31a1978f4bf013f4ffd2e numpy-1.16.6-cp36-cp36m-win32.whl
167ac7f60d82bd32feb60e675a2c3b01 numpy-1.16.6-cp36-cp36m-win_amd64.whl
2e47bb698842b7289bb34951edf3be3d numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
169eb83d7f0a566207048cc282720ff8 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
454ac4d3e09931bfb58cc01b679f4f5f numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
192593ce2df33b60eab445b31285ad96 numpy-1.16.6-cp37-cp37m-win32.whl
de3b92f1133613e1bd96d788ba9d4307 numpy-1.16.6-cp37-cp37m-win_amd64.whl
5e958c603605f3168b7b29f421f64cdd numpy-1.16.6.tar.gz
3dc21c84a295fe77eadf8f872685a7de numpy-1.16.6.zip
08bf4f66f190822f4642e036accde8da810b87fffc0b9409e7a00d9e54760099 numpy-1.16.6-cp27-cp27m-macosx_10_9_x86_64.whl
d759ca1b76ac6f6b6159fb74984126035feb1dee9f68b4b961889b6dc090f33a numpy-1.16.6-cp27-cp27m-manylinux1_i686.whl
d3c5377c6122de876e695937ef41ffee5d2831154c5e4856481b93406cdfeecb numpy-1.16.6-cp27-cp27m-manylinux1_x86_64.whl
345b1748e6b0d4773a518868c783b16fdc33a22683bdb863484cd29fe8d206e6 numpy-1.16.6-cp27-cp27m-win32.whl
7a5a1f49a643aa1ab3e0579da0a48b8a48ea4369eb63c5065459d0a37f430237 numpy-1.16.6-cp27-cp27m-win_amd64.whl
817eed5a6ec2fc9c1a0ee3fbf9a441c66b6766383580513ccbdf3121acc0b4fb numpy-1.16.6-cp27-cp27mu-manylinux1_i686.whl
1680c8d5086a88d293dfd1a10b6429a09140cacee878034fa2308472ec835db4 numpy-1.16.6-cp27-cp27mu-manylinux1_x86_64.whl
a4383edb1b8caa989c3541a37ef204916322c503b8eeacc7ee8f4ba24cac97b8 numpy-1.16.6-cp35-cp35m-macosx_10_9_intel.whl
9bb690692f3101583b0b99f3be362742e4f8ebe6c7934fa36cd8ca2b567a0bcc numpy-1.16.6-cp35-cp35m-manylinux1_i686.whl
b9e334568ca1bf56598eddfac6db6a75bcf1c91aa90d598648f21e45207daeae numpy-1.16.6-cp35-cp35m-manylinux1_x86_64.whl
55cae40d2024c56e7b79fb070106cb4289dcc6b55c62dba1d89a6944448c6a53 numpy-1.16.6-cp35-cp35m-win32.whl
a1ffc9c770ccc2be9284310a3726c918b26ca19b34c0079e7a41aba950ab175f numpy-1.16.6-cp35-cp35m-win_amd64.whl
3f423b06bf67cd1dbf72e13e9b53a9ca71972e5abf712ee6cb5d8cbb178fff02 numpy-1.16.6-cp36-cp36m-macosx_10_9_x86_64.whl
34e6bb44e3d9a663f903b8c297ede865b4dff039aa43cc9a0b249e02c27f1396 numpy-1.16.6-cp36-cp36m-manylinux1_i686.whl
60c56922c9d759d664078fbef94132377ef1498ab27dd3d0cc7a21b346e68c06 numpy-1.16.6-cp36-cp36m-manylinux1_x86_64.whl
23cad5e5858dfb73c0e5bce03fe78e5e5908c22263156c58d4afdbb240683c6c numpy-1.16.6-cp36-cp36m-win32.whl
77399828d96cca386bfba453025c34f22569909d90332b961d3d4341cdb46a84 numpy-1.16.6-cp36-cp36m-win_amd64.whl
97ddfa7688295d460ee48a4d76337e9fdd2506d9d1d0eee7f0348b42b430da4c numpy-1.16.6-cp37-cp37m-macosx_10_9_x86_64.whl
390f6e14a8d73591f086680464aa101a9be9187d0c633f48c98b429b31b712c2 numpy-1.16.6-cp37-cp37m-manylinux1_i686.whl
a1772dc227e3e415eeaa646d25690dc854bddc3d626e454c7c27acba060cb900 numpy-1.16.6-cp37-cp37m-manylinux1_x86_64.whl
c9fb4fcfcdcaccfe2c4e1f9e0133ed59df5df2aa3655f3d391887e892b0a784c numpy-1.16.6-cp37-cp37m-win32.whl
6b1853364775edb85ceb0f7f8214d9e993d4d1d9bd3310eae80529ea14ba2ba6 numpy-1.16.6-cp37-cp37m-win_amd64.whl
61562ddac78765969959500b0da9c6f9ba7d77eeb12ec3927afae5303df08777 numpy-1.16.6.tar.gz
e5cf3fdf13401885e8eea8170624ec96225e2174eb0c611c6f26dd33b489e3ff numpy-1.16.6.zip
π The NumPy 1.16.5 release fixes bugs reported against the 1.16.4 release, and
π also backports several enhancements from master that seem appropriate for a
π release series that is the last to support Python 2.7. The wheels on PyPI are
π linked with OpenBLAS v0.3.7-dev, which should fix errors on Skylake series
cpus.
π Downstream developers building this release should use Cython >= 0.29.2 and, if
π using OpenBLAS, OpenBLAS >= v0.3.7. The supported Python versions are 2.7 and
3.5-3.7.
π A total of 18 people contributed to this release. People with a "+" by their
names contributed a patch for the first time.
π A total of 23 pull requests were merged for this release.
__all__cf7ff97464eb044cb49618be5fe29aee numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
6fbf51644f8722fa90276c04fe3d031f numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
df4ab8600495131e44ad1b173f6cc9fc numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
2f6fd50a02da9d56e3d950a6b738337e numpy-1.16.5-cp27-cp27m-win32.whl
d36b67522ee102b7865a83b26a1d97aa numpy-1.16.5-cp27-cp27m-win_amd64.whl
5b4f83c092257f6c98bedd44505e7b6d numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
d6fd33607099abdea62752cf303a1763 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
fa48e45bd3e5dbac923296b039e70706 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
85a7db0c597037cced7ab82c0f0cdcc8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
401e053e98faada4bc8cdcc9b04d619f numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
2912ba9109dca60115dba59606cac27b numpy-1.16.5-cp35-cp35m-win32.whl
756b7ff320ef821f2cd279c5df7c9f46 numpy-1.16.5-cp35-cp35m-win_amd64.whl
2ae22b506a07575a4bc6a91d2db25df5 numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
12cbf61ed2abec3f77cfa3a46b7e4bdc numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
ab726a4244e9e070cde814d8415cff4c numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
752e461d193b7049e25c7e20f7d4808a numpy-1.16.5-cp36-cp36m-win32.whl
2712434cdfb27a301c49cf97eee656d5 numpy-1.16.5-cp36-cp36m-win_amd64.whl
394fee86faa235dea6d2bb6270961266 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
0713da36acc884897f76bc8117ca7a42 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
7856a32b3b2d93d018d2ba5dce941ffa numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
33b7fd0d727c9f09d61879afde8096f6 numpy-1.16.5-cp37-cp37m-win32.whl
5287ce297cd8093463bb29bef42db103 numpy-1.16.5-cp37-cp37m-win_amd64.whl
f9c22f53f17e81b25af8e53b026a9831 numpy-1.16.5.tar.gz
adaad8c166cf0344af3ca1a664dd4a38 numpy-1.16.5.zip
37fdd3bb05caaaacac58015cfa38e38b006ee9cef1eaacdb70bb68c16ac7db1d numpy-1.16.5-cp27-cp27m-macosx_10_9_x86_64.whl
f42e21d8db16315bc30b437bff63d6b143befb067b8cd396fa3ef17f1c21e1a0 numpy-1.16.5-cp27-cp27m-manylinux1_i686.whl
4208b225ae049641a7a99ab92e84ce9d642ded8250d2b6c9fd61a7fa8c072561 numpy-1.16.5-cp27-cp27m-manylinux1_x86_64.whl
4d790e2a37aa3350667d8bb8acc919010c7e46234c3d615738564ddc6d22026f numpy-1.16.5-cp27-cp27m-win32.whl
1594aec94e4896e0688f4f405481fda50fb70547000ae71f2e894299a088a661 numpy-1.16.5-cp27-cp27m-win_amd64.whl
2c5a556272c67566e8f4607d1c78ad98e954fa6c32802002a4a0b029ad8dd759 numpy-1.16.5-cp27-cp27mu-manylinux1_i686.whl
3a96e59f61c7a8f8838d0f4d19daeba551c5f07c5cdd5c81e8e9d4089ade0042 numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
612297115bade249a118616c065597ff2e5e1f47ed220d7ba71f3e6c6ebcd814 numpy-1.16.5-cp35-cp35m-macosx_10_9_x86_64.whl
dbc9e9a6a5e0c4f57498855d4e30ef8b599c0ce13fdf9d64299197508d67d9e8 numpy-1.16.5-cp35-cp35m-manylinux1_i686.whl
fada0492dd35412cd96e0578677e9a4bdae8f102ef2b631301fcf19066b57119 numpy-1.16.5-cp35-cp35m-manylinux1_x86_64.whl
ada1a1cd68b9874fa480bd287438f92bd7ce88ca0dd6e8d56c70f2b3dab97314 numpy-1.16.5-cp35-cp35m-win32.whl
27aa457590268cb059c47daa8c55f48c610ce81da8a062ec117f74efa9124ec9 numpy-1.16.5-cp35-cp35m-win_amd64.whl
03b28330253904d410c3c82d66329f29645eb54a7345cb7dd7a1529d61fa603f numpy-1.16.5-cp36-cp36m-macosx_10_9_x86_64.whl
911d91ffc6688db0454d69318584415f7dfb0fc1b8ac9b549234e39495684230 numpy-1.16.5-cp36-cp36m-manylinux1_i686.whl
ceb353e3ae840ce76256935b18c17236ca808509f231f41d5173d7b2680d5e77 numpy-1.16.5-cp36-cp36m-manylinux1_x86_64.whl
e6ce7c0051ed5443f8343da2a14580aa438822ae6526900332c4564f371d2aaf numpy-1.16.5-cp36-cp36m-win32.whl
9a2b950bca9faca0145491ae9fd214c432f2b1e36783399bc2c3732e7bcc94f4 numpy-1.16.5-cp36-cp36m-win_amd64.whl
00836128feaf9a7c7fedeea05ad593e7965f523d23fe3ffbf20cfffd88e9f2b1 numpy-1.16.5-cp37-cp37m-macosx_10_9_x86_64.whl
3d6a354bb1a1ce2cabd47e0bdcf25364322fb55a29efb59f76944d7ee546d8b6 numpy-1.16.5-cp37-cp37m-manylinux1_i686.whl
f7fb27c0562206787011cf299c03f663c604b58a35a9c2b5218ba6485a17b145 numpy-1.16.5-cp37-cp37m-manylinux1_x86_64.whl
46469e7fcb689036e72ce61c3d432ed35eb4c71b5119e894845b434b0fae5813 numpy-1.16.5-cp37-cp37m-win32.whl
fb207362394567343d84c0462ec3ba203a21c78be9a0fdbb94982e76859ec37e numpy-1.16.5-cp37-cp37m-win_amd64.whl
2b63c414fb43a4f0cb69b29b7e9d48275af0dbb5b1ffd2f2de99c4df9967e151 numpy-1.16.5.tar.gz
8bb452d94e964b312205b0de1238dd7209da452343653ab214b5d681780e7a0c numpy-1.16.5.zip