Abramowitz and Stegun.
Handbook of Mathematical Functions.
Index to all pages and sections
Note
: pages omitted from this electronic edition are not hyperlinked.
Start page
0
Start page using frames
0
Electronic release notes
0
Page index (hyperlinked)
0
Subject index (hyperlinked)
0
Title page
I
(
HTML
)
Errata Notice
II
(
HTML
)
Preface
III
(
HTML
)
Preface to the Ninth Printing
IIIa
(
HTML
)
Foreword
V
(
HTML
)
VI
Table of Contents
VII
(
HTML
)
VIII
Introduction.
1. Introduction. 2. Accuracy of the Tables.
IX
(
HTML
)
3. Auxiliary Functions and Arguments. 4. Interpolation
X
XI
5. Inverse Interpolation
XII
6. Bivariate Interpolation. 7. Generation of Functions from Recurrence Relations
XIII
8. Acknowledgments
XIV
(
HTML
)
2. Physical Constants and Conversion Factors
5
Table 2.1. Common Units and Conversion Factors. Table 2.2. Names and Conversion Factors for Electric and Magnetic Units
6
Table 2.3. Adjusted Values of Constants
7
Table 2.4. Miscellaneous Conversion Factors. Table 2.5. Conversion Factors for Customary U.S. Units to Metric Units. Table 2.6. Geodetic Constants
8
3. Elementary analytical methods
9
3.1. Binomial Theorem and Binomial Coefficients; Arithmetic and Geometric Progressions; Arithmetic, Geometric, Harmonic and Generalized Means. 3.2. Inequalities
10
3.3. Rules for Differentiation and Integration
11
12
3.4. Limits, Maxima and Minima
13
3.5. Absolute and Relative Errors. 3.6. Infinite Series
14
15
3.7. Complex Numbers and Functions
16
3.8. Algebraic Equations
17
3.9. Successive Approximation Methods
18
3.10. Theorems on Continued Fractions. Numerical Methods. 3.11. Use and Extension of the Tables. 3.12. Computing Techniques
19
20
References
23
4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyperbolic Functions
65
Mathematical Properties. 4.1. Logarithmic Function
67
68
4.2. Exponential Function
69
70
4.3. Circular Functions
71
72
73
74
75
76
77
78
4.4. Inverse Circular Functions
79
80
81
82
4.5. Hyperbolic Functions
83
84
85
4.6. Inverse Hyperbolic Functions
86
87
88
Numerical Methods. 4.7. Use and Extension of the Tables
89
References
93
94
5. Exponential Integral and Related Functions
227
Mathematical Properties. 5.1. Exponential Integral
228
229
230
5.2. Sine and Cosine Integrals
231
232
Numerical Methods. 5.3. Use and Extension of the Tables
233
234
References
235
236
237
6. Gamma Function and Related Functions
253
Mathematical Properties. 6.1. Gamma Function
255
256
257
6.2. Beta Function. 6.3. Psi (Digamma) Function
258
259
6.4. Polygamma Functions. 6.5. Incomplete Gamma Function
260
261
262
6.6. Incomplete Beta Function. Numerical Methods. 6.7. Use and Extension of the Tables
263
6.8. Summation of Rational Series by Means of Polygamma Functions
264
References
265
266
7. Error Function and Fresnel Integrals
295
Mathematical Properties. 7.1. Error Function
297
298
7.2. Repeated Integrals of the Error Function
299
7.3. Fresnel Integrals
300
301
7.4. Definite and Indefinite Integrals
302
303
Numerical Methods. 7.5. Use and Extension of the Tables
304
References
308
309
Complex zeros, maxima, minima of the error function and Fresnel integrals: asymptotics
329
8. Legendre function
331
Mathematical Properties. Notation. 8.1. Differential Equation
332
8.2. Relations Between Legendre Functions. 8.3. Values on the Cut. 8.4. Explicit Expressions
333
8.6. Special Values
334
8.7. Trigonometric Expansions. 8.8. Integral Representations. 8.9. Summation Formulas. 8.10. Asymptotic Expansions
335
8.11. Toroidal Functions
336
8.12. Conical Functions. 8.13. Relation to Elliptic Integrals. 8.14. Integrals
337
338
Numerical Methods. 8.15. Use and Extension of the Tables
339
References
340
341
9. Bessel Functions of Integer Order
355
Mathematical Properties. Notation. Bessel Functions
J
and
Y
. 9.1. Definitions and Elementary Properties
358
359
360
361
362
363
9.2. Asymptotic Expansions for Large Arguments
364
9.3. Asymptotic Expansions for Large Orders
365
366
367
368
9.4. Polynomial Approximations
369
9.5. Zeros
370
371
372
373
Modified Bessel Functions
I
and
K
. 9.6. Definitions and Properties
374
375
376
9.7. Asymptotic Expansions
377
9.8. Polynomial Approximations
378
Kelvin Functions. 9.9. Definitions and Properties
379
380
9.10. Asymptotic Expansions
381
382
383
9.11. Polynomial Approximations
384
Numerical Methods. 9.12. Use and Extension of the Tables
385
386
387
References
388
389
10. Bessel Functions of Fractional Order
435
Mathematical Properties. 10.1. Spherical Bessel Functions
437
438
439
440
441
10.2. Modified Spherical Bessel Functions
443
444
10.3. Riccati-Bessel Functions
445
10.4. Airy Functions
446
447
448
449
450
451
Numerical Methods. 10.5. Use and Extension of the Tables
452
References
455
456
11. Integrals of Bessel Functions
479
Mathematical Properties. 11.1. Simple Integrals of Bessel Functions
480
481
11.2. Repeated Integrals of
J
n
(
z
) and
K
0
(
z
)
482
11.3. Reduction Formulas for Indefinite Integrals
483
484
11.4. Definite Integrals
485
486
487
Numerical Methods. 11.5. Use and Extension of the Tables
488
489
References
490
491
12. Struve Functions and Related Functions
495
Mathematical Properties. 12.1. Struve Function
H
n
(
s
)
496
497
12.2. Modified Struve Function
L
nu
(
z
). 12.3. Anger and Weber Functions
498
Numerical Methods. 12.4. Use and Extension of the Tables
499
References
500
Explanations of numerical methods to compute Struve functions
502
13. Confluent Hypergeometric Functions
503
Mathematical Properties. 13.1. Definitions of Kummer and Whittaker Functions
504
13.2. Integral Representations
505
13.3. Connections With Bessel Functions
506
507
13.5. Asymptotic Expansions and Limiting Forms
508
13.6. Special Cases
509
13.7. Zeros and Turning Values
510
Numerical Methods. 13.8. Use and Extension of the Tables
511
13.10. Graphing
M
(
a
,
b
,
x
)
513
References
514
515
14. Coulomb Wave Functions
537
Mathematical Properties. 14.1. Differential Equation, Series Expansions
538
14.2. Recurrence and Wronskian Relations. 14.3. Integral Representations. 14.4. Bessel Function Expansions
539
14.5. Asymptotic Expansions
540
541
14.6. Special Values and Asymptotic Behavior
542
Numerical Methods. 14.7. Use and Extension of the Tables
543
References
544
15. Hypergeometric Functions
555
Mathematical Properties. 15.1. Gauss Series, Special Elementary Cases, Special Values of the Argument
556
15.2. Differentiation Formulas and Gauss' Relations for Contiguous Functions
557
Integral Representations and Transformation Formulas
558
559
560
15.4. Special Cases of
F
(
a
,
b
;
c
;
z
), Polynomials and Legendre Functions
561
15.5. The Hypergeometric Differential Equation
562
563
15.6. Riemann's Differential Equation
564
15.7. Asymptotic Expansions. References
565
566
16. Jacobian Elliptic Functions and Theta Functions
567
568
Mathematical Properties. 16.1. Introduction
569
16.2. Classification of the Twelve Jacobian Elliptic Functions. 16.3. Relation of the Jacobian Functions to the Copolar Trio
570
16.4. Calculation of the Jacobian Functions by Use of the Arithmetic-Geometric Mean (A.G.M.). 16.5. Special Arguments. 16.6. Jacobian Functions when
m
=0 or 1
571
16.7. Principal Terms. 16.8. Change of Argument
572
16.9. Relations Between the Squares of the Functions. 16.10. Change of Parameter. 16.11. Reciprocal Parameter (Jacobi's Real Transformation). 16.12. Descending Landen Transformation (Gauss' Transformation). 16.13. Approximation in Terms of Circular Functions. 16.14. Ascending Landen Transformation
573
16.15. Approximation in Terms of Hyperbolic Functions. 16.16. Derivatives. 16.17. Addition Theorems. 16.18. Double Arguments. 16.19. Half Arguments. 16.20. Jacobi's Imaginary Transformation
574
16.21. Complex Arguments. 16.22. Leading Terms of the Series in Ascending Powers of
u
. 16.23. Series Expansion in Terms of the Nome
q
and the Argument
v
. 16.24. Integrals of the Twelve Jacobian Elliptic Functions
575
16.25. Notation for the Integrals of the Squares of the Twelve Jacobian Elliptic Functions. 16.26. Integrals in Terms of the Elliptic Integral of the Second Kind. 16.27. Theta Functions; Expansions in Terms of the Nome
q
. 16.28. Relations Between the Squares of the Theta Functions. 16.29. Logarithmic Derivatives of the Theta Functions
576
16.30. Logarithms of Theta Functions of Sum and Difference. 16.31. Jacobi's Notation for Theta Functions. 16.32. Calculation of Jacobi's Theta Function Theta(
u
|
m
) by Use of the Arithmetic-Geometric Mean. 16.33. Addition of Quarter-Periods to Jacobins Eta and Theta Functions
577
16.34. Relation of Jacobi's Zeta Function to the Theta Functions. 16.35. Calculation of Jacobi's Zeta Function
Z
(
u
|
m
) by Use of the Arithmetic-Geometric Mean. 16.36. Neville's Notation for Theta Functions
578
16.37. Expression as Infinite Products. 16.38. Expression as Infinite Series. Numerical Methods. 16.39. Use and Extension of the Tables
579
References
581
17. Elliptic Integrals
587
Mathematical Properties. 17.1. Definition of Elliptic Integrals. 17.2. Canonical Forms
589
17.3. Complete Elliptic Integrals of the First and Second Kinds
590
591
17.4. Incomplete Elliptic Integrals of the First and Second Kinds
592
593
594
595
596
17.5. Landen's Transformation
597
17.6. The Process of the Arithmetic-Geometric Mean
598
17.7. Elliptic Integrals of the Third Kind
599
Numerical Methods. 17.8. Use and Extension of the Tables
600
601
References
606
607
18. Weierstrass Elliptic and Related Functions
627
Mathematical Properties. 18.1. Definitions, Symbolism, Restrictions and Conventions
629
630
18.2. Homogeneity Relations, Reduction Formulas and Processes
631
632
18.3. Special Values and Relations
633
634
18.4. Addition and Multiplication Formulas. 18.5. Series Expansions
635
636
637
638