c28004deb0e938a9a9532c9c2e0f3197b6e572cb
Go to file
Samuel Merritt c28004deb0 Multiprocess object replicator
Add a multiprocess mode to the object replicator. Setting the
"replicator_workers" setting to a positive value N will result in the
replicator using up to N worker processes to perform replication
tasks.
At most one worker per disk will be spawned, so one can set
replicator_workers=99999999 to always get one worker per disk
regardless of the number of disks in each node. This is the same
behavior that the object reconstructor has.
Worker process logs will have a bit of information prepended so
operators can tell which messages came from which worker. It looks
like this:
 [worker 1/2 pid=16529] 154/154 (100.00%) partitions replicated in 1.02s (150.87/sec, 0s remaining)
The prefix is "[worker M/N pid=P] ", where M is the worker's index, N
is the total number of workers, and P is the process ID. Every message
from the replicator's logger will have the prefix; this includes
messages from down in diskfile, but does not include things printed to
stdout or stderr.
Drive-by fix: don't dump recon stats when replicating only certain
policies. When running the object replicator with replicator_workers >
0 and "--policies=X,Y,Z", the replicator would update recon stats
after running. Since it only ran on a subset of objects, it should not
update recon, much like it doesn't update recon when run with
--devices or --partitions.
Change-Id: I6802a9ad9f1f9b9dafb99d8b095af0fdbf174dc5
2018年04月24日 04:05:08 +00:00
2018年04月24日 04:05:08 +00:00
2018年04月24日 04:05:08 +00:00
2013年09月17日 11:46:04 +10:00
2018年03月12日 23:10:24 +00:00
2018年03月01日 06:49:57 +00:00
2018年04月24日 04:05:08 +00:00
2018年04月24日 04:05:08 +00:00
2018年03月06日 06:57:53 -05:00
2017年12月14日 14:57:48 -08:00
2018年02月14日 12:31:17 -08:00
2018年01月04日 20:40:11 -08:00
2011年10月24日 15:05:49 -04:00
2018年02月02日 12:09:20 -08:00
2016年02月10日 14:16:56 -08:00
2018年03月12日 23:10:24 +00:00
2018年02月02日 12:09:20 -08:00
2011年01月27日 00:01:24 +00:00
2016年09月16日 09:20:34 -07:00
2017年12月20日 09:29:19 +01:00
2018年02月02日 12:09:20 -08:00
2012年12月19日 12:48:27 -05:00
2016年05月19日 15:56:15 +02:00
2018年03月11日 02:42:48 +08:00
2017年01月05日 10:24:09 -08:00
2018年03月26日 12:53:37 +00:00
2014年05月21日 09:37:22 -07:00

Team and repository tags

image

Swift

A distributed object storage system designed to scale from a single machine to thousands of servers. Swift is optimized for multi-tenancy and high concurrency. Swift is ideal for backups, web and mobile content, and any other unstructured data that can grow without bound.

Swift provides a simple, REST-based API fully documented at https://docs.openstack.org/.

Swift was originally developed as the basis for Rackspace's Cloud Files and was open-sourced in 2010 as part of the OpenStack project. It has since grown to include contributions from many companies and has spawned a thriving ecosystem of 3rd party tools. Swift's contributors are listed in the AUTHORS file.

Docs

To build documentation install sphinx (pip install sphinx), run python setup.py build_sphinx, and then browse to /doc/build/html/index.html. These docs are auto-generated after every commit and available online at https://docs.openstack.org/swift/latest/.

For Developers

Getting Started

Swift is part of OpenStack and follows the code contribution, review, and testing processes common to all OpenStack projects.

If you would like to start contributing, check out these notes to help you get started.

The best place to get started is the "SAIO - Swift All In One". This document will walk you through setting up a development cluster of Swift in a VM. The SAIO environment is ideal for running small-scale tests against swift and trying out new features and bug fixes.

Tests

There are three types of tests included in Swift's source tree.

  1. Unit tests
  2. Functional tests
  3. Probe tests

Unit tests check that small sections of the code behave properly. For example, a unit test may test a single function to ensure that various input gives the expected output. This validates that the code is correct and regressions are not introduced.

Functional tests check that the client API is working as expected. These can be run against any endpoint claiming to support the Swift API (although some tests require multiple accounts with different privilege levels). These are "black box" tests that ensure that client apps written against Swift will continue to work.

Probe tests are "white box" tests that validate the internal workings of a Swift cluster. They are written to work against the "SAIO - Swift All In One" dev environment. For example, a probe test may create an object, delete one replica, and ensure that the background consistency processes find and correct the error.

You can run unit tests with .unittests, functional tests with .functests, and probe tests with .probetests. There is an additional .alltests script that wraps the other three.

To fully run the tests, the target environment must use a filesystem that supports large xattrs. XFS is strongly recommended. For unit tests and in-process functional tests, either mount /tmp with XFS or provide another XFS filesystem via the TMPDIR environment variable. Without this setting, tests should still pass, but a very large number will be skipped.

Code Organization

  • bin/: Executable scripts that are the processes run by the deployer
  • doc/: Documentation
  • etc/: Sample config files
  • examples/: Config snippets used in the docs
  • swift/: Core code
    • account/: account server
    • cli/: code that backs some of the CLI tools in bin/
    • common/: code shared by different modules
      • middleware/: "standard", officially-supported middleware
      • ring/: code implementing Swift's ring
    • container/: container server
    • locale/: internationalization (translation) data
    • obj/: object server
    • proxy/: proxy server
  • test/: Unit, functional, and probe tests

Data Flow

Swift is a WSGI application and uses eventlet's WSGI server. After the processes are running, the entry point for new requests is the Application class in swift/proxy/server.py. From there, a controller is chosen, and the request is processed. The proxy may choose to forward the request to a back-end server. For example, the entry point for requests to the object server is the ObjectController class in swift/obj/server.py.

For Deployers

Deployer docs are also available at https://docs.openstack.org/swift/latest/. A good starting point is at https://docs.openstack.org/swift/latest/deployment_guide.html There is an ops runbook that gives information about how to diagnose and troubleshoot common issues when running a Swift cluster.

You can run functional tests against a swift cluster with .functests. These functional tests require /etc/swift/test.conf to run. A sample config file can be found in this source tree in test/sample.conf.

For Client Apps

For client applications, official Python language bindings are provided at https://github.com/openstack/python-swiftclient.

Complete API documentation at https://developer.openstack.org/api-ref/object-store/

There is a large ecosystem of applications and libraries that support and work with OpenStack Swift. Several are listed on the associated projects page.


For more information come hang out in #openstack-swift on freenode.

Thanks,

The Swift Development Team

Description
OpenStack Storage (Swift)
Readme 204 MiB
Languages
Python 99.7%
JavaScript 0.2%