TOPICS
Search

Pierce Expansion


The Pierce expansion, or alternated Egyptian product, of a real number 0<x<1 is the unique increasing sequence {a_1,a_2,...} of positive integers a_i such that

A number 0<x<1 has a finite Pierce expansion iff x is rational.

Special cases are summarized in the following table.

x OEIS Pierce expansion
2^(-1/2) A091831 1, 3, 8, 33, 35, 39201, 39203, 60245508192801, ...
Catalan's constant K A132201 1, 11, 13, 59, 582, 12285, 127893, 654577, ...
cos1 A118239 1, 2, 12, 30, 56, 90, 132, 182, 240, ...
e^(-1) A020725 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
Euler-Mascheroni constant gamma A006284 1, 2, 6, 13, 21, 24, 225, 615, 17450, ...
natural logarithm of 2 ln2 A091846 1, 3, 12, 21, 51, 57, 73, 85, 96, ...
phi^(-1) A118242 1, 2, 4, 17, 19, 5777, 5779, 192900153617, ...
pi^(-1) A006283 3, 22, 118, 383, 571, 635, 70529, ...
sech1 1, 2, 3, 8, 9, 24, 37, 85, ...
sin1 A068377 1, 6, 20, 42, 72, 110, 156, 210, 272, ...

If x is of the form

then there is a closed-form for the Pierce expansion given by

x={c_0-1,c_0+1,c_1-1,c_1+1,c_2-1,c_2+1,...},
(3)

where

c_0 = c
(4)

and c_(k+1)=c_k^3-3c_k (Shallit 1984). This recurrence has explicit solution

c_k^((c))=-2cos[3^kcos^(-1)(-1/2c)]
(6)

not noted by Shallit (1984).

c=3, corresponding to x=(3-sqrt(5))/2, has the particularly beautiful form

c_n^((3)) = -2cos[3^ncos^(-1)(-3/2)]
(7)
= 2F_(2·3^n+1)-F_(2·3^n),
(8)

where F_n is a Fibonacci number.

The following table gives coefficients c_k and a_k for some small integer c.

c x OEIS {c_k} OEIS {a_k}
3 1/2(3-sqrt(5)) A001999 3, 18, 5778, 192900153618, ... A006276 2, 4, 17, 19, 5777, 5779, ...
4 2-sqrt(3) 4, 52, 140452, 2770663499604052, ... 3, 5, 51, 53, 140451, 140453, ...
5 1/2(5-sqrt(21)) 5, 110, 1330670, 2356194280407770990, ... 4, 6, 109, 111, 1330669, 1330671, ...
6 3-2sqrt(2) A112845 6, 198, 7761798, 467613464999866416198, ... A006275 5, 5, 7, 197, 199, 7761797, ...

See also

Engel Expansion

Explore with Wolfram|Alpha

References

Erdős, P. and Shallit, J. O. "New Bounds on the Length of Finite Pierce and Engel Series." Sem. Theor. Nombres Bordeaux 3, 43-53, 1991.Keselj, V. "Length of Finite Pierce Series: Theoretical Analysis and Numerical Computations." Sep. 10, 1996. http://www.cs.uwaterloo.ca/research/tr/1996/21/cs-96-21.pdf.Mays, M. E. "Iterating the Division Algorithm." Fib. Quart. 25, 204-213, 1987.Pierce, T. A. "On an Algorithm and Its Use in Approximating Roots of Polynomials." Amer. Math. Monthly 36, 523-525, 1929.Salzer, H. E. "The Approximation of Numbers as Sums of Reciprocals." Amer. Math. Monthly 54, 135-142, 1947.Shallit, J. O. "Some Predictable Pierce Expansions." Fib. Quart. 22, 332-335, 1984.Shallit, J. O. "Metric Theory of Pierce Expansions." Fib. Quart. 24, 22-40, 1986.Sloane, N. J. A. Sequences A001999/M3055, A006275/M1342, A006283/M3092, A006284/M1593, A006276/M1298, A020725, A091831, A091846, A112845, A118242, and A132201 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Pierce Expansion

Cite this as:

Weisstein, Eric W. "Pierce Expansion." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/PierceExpansion.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /