Engel Expansion
The Engel expansion, also called the Egyptian product, of a positive real number x is the unique increasing sequence {a_1,a_2,...} of positive integers a_i such that
The following table gives the Engel expansions of Catalan's constant, e, the Euler-Mascheroni constant gamma, pi, and the golden ratio phi.
e has a very regular Engel expansion, namely 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... (OEIS A000027). Interestingly, the expansion for the hyperbolic sine sinh1 has closed form a_n=2(n-1)(2n-1) for n>1, which means the expansion for the hyperbolic cosine cosh1 has the closed form a_n=2(n-1)(2n-3) for n>1. Similarly, the Engel expansion for 1/e is a_n=2(2n+1)(n-1) for n>1, which follows from
See also
Continued Fraction, Egyptian Fraction, Pierce ExpansionExplore with Wolfram|Alpha
More things to try:
References
Engel, F. "Entwicklung der Zahlen nach Stammbruechen." Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg. pp. 190-191, 1913.Erdős, P. and Shallit, J. O. "New Bounds on the Length of Finite Pierce and Engel Series." Sem. Theor. Nombres Bordeaux 3, 43-53, 1991.Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 53-59, 2003.Schweiger, F. Ergodic Theory of Fibred Systems and Metric Number Theory. Oxford, England: Oxford University Press, 1995.Sloane, N. J. A. Sequences A000027/M0472, A006784/M4475, A014012, A028254, A028257, A028259, A053977, A054543, A059180, A059193, A068377, A118239, and A118326 in "The On-Line Encyclopedia of Integer Sequences."Wu, J. "How Many Points Have the Same Engel and Sylvester Expansions?." J. Number Th. 103, 16-26, 2003.Referenced on Wolfram|Alpha
Engel ExpansionCite this as:
Weisstein, Eric W. "Engel Expansion." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/EngelExpansion.html