TOPICS
Search

Internal Similitude Center


InternalCenterofSimilitude

In general, the internal similitude center of two circles C_1=C(x_1,r_1) and C_2=C(x_2,r_2) with centers given in Cartesian coordinates is given by

In trilinear coordinates, the internal center of similitude is given by alpha:beta:gamma, where

The incircle and circumcircle of a triangle DeltaABC have two similitude centers, namely the internal center of similitude Si and the external similitude center Se. The internal center of similitude of these two circles Si is the isogonal conjugate of the Gergonne point of DeltaABC. It is Kimberling center X_(55) and has equivalent triangle center functions

alpha_(55) = a(b+c-a)
(5)
alpha_(55) = 1+cosA
(6)
alpha_(55) = cos^2(1/2A).
(7)

The two points Si and Se share certain similar properties, but there seems to be no straightforward analogy between the two. For instance, Si is the homothetic center of the tangential, intangents, and extangents triangles of triangle DeltaABC taken pairwise, but the only comparable property of the external similitude center Se is more complicated: Se is the homothetic center of the tangential triangle and the reflection of the intangents triangle in the incenter of DeltaABC.

The following table summarizes the internal similitude centers for a number of named circles.

circle 1 circle 2 Kimberling internal similitude center
anticomplementary circle Brocard circle X_(2542) insimilicenter(anticomplementary circle, Brocard circle)
anticomplementary circle cosine circle X_(1587) point Castor I
anticomplementary circle first Lemoine circle X_(2546) insimilicenter(anticomplementary circle, first Lemoine circle)
anticomplementary circle Gallatly circle X_(2544) insimilicenter(anticomplementary circle, Gallatly circle)
anticomplementary circle incircle X_(388) intersection of lines (X_1,X_4) and (X_7,X_8)
anticomplementary circle Moses circle X_(2548) insimilicenter(anticomplementary circle, Moses circle)
anticomplementary circle orthocentroidal circle X_(2552) insimilicenter(anticomplementary circle, orthocentroidal circle)
anticomplementary circle second Johnson-Yff circle X_(497) crosspoint of the Nagel point and Gergonne point
anticomplementary circle Spieker circle X_(2550) insimilicenter(anticomplementary circle, Spieker circle)
Apollonius circle Bevan circle X_(1695) insimilicenter(Bevan circle, Apollonius circle)
Apollonius circle Brocard circle X_(1693) insimilicenter(Brocard circle, Apollonius circle)
Apollonius circle circumcircle X_(573) orthoharmonic of X(58)
Apollonius circle cosine circle X_(1685) insimilicenter(2nd Lemoine circle, Apollonius circle)
Apollonius circle excircles radical circle X_(2538) insimilicenter(Apollonius circle, Brocard circle)
Apollonius circle first Lemoine circle X_(1683) insimilicenter(first Lemoine circle, excircles radical circle)
Apollonius circle Gallatly circle X_(2019) exsimilicenter(Gallatly circle, Apollonius circle)
Apollonius circle incircle X_(1682) insimilicenter(incircle, Apollonius circle)
Bevan circle Brocard circle X_(1704) insimilicenter(Bevan circle, Brocard circle)
Bevan circle circumcircle X_(165) centroid of the excentral triangle
Bevan circle cosine circle X_(1702) insimilicenter(Bevan circle, 2nd Lemoine circle)
Bevan circle first Lemoine circle X_(1700) insimilicenter(Bevan circle, 1st Lemoine circle)
Bevan circle Gallatly circle X_(2017) insimilicenter(Gallatly circle, Bevan circle)
Bevan circle incircle X_(1697) insimilicenter(Bevan circle, incircle)
Bevan circle Moses circle X_(1571) insimilicenter of excentral and Moses circles
Bevan circle nine-point circle X_(1698) insimilicenter(Bevan circle, nine-point circle)
Bevan circle second Brocard circle X_(2572) insimilicenter(Bevan circle, second Brocard circle)
Brocard circle circumcircle X_(1340) insimilicenter(circumcircle, Brocard circle)
Brocard circle cosine circle X_(1669) exsimilicenter(Brocard circle, 2nd Lemoine circle)
Brocard circle first Lemoine circle X_(182) midpoint of Brocard diameter
Brocard circle Gallatly circle X_(2011) insimilicenter(Gallatly circle, Brocard circle)
Brocard circle incircle X_(1674) insimilicenter(incircle, Brocard circle)
Brocard circle Moses circle X_(2033) insimilicenter(Moses circle, Brocard circle)
Brocard circle nine-point circle X_(1348) insimilicenter(nine-point circle, Brocard circle)
Brocard circle orthocentroidal circle X_(2469) insimilicenter(Brocard circle, orthocentroidal circle)
Brocard circle second Brocard circle X_(1342) insimilicenter(circumcircle, 1st Lemoine circle)
Brocard circle Spieker circle X_(1678) insimilicenter(Brocard circle, Spieker circle)
circumcircle cosine circle X_(371) Kenmotu point (congruent squares point)
circumcircle excircles radical circle X_(2536) insimilicenter(circumcircle, excircles radical circle)
circumcircle first Johnson-Yff circle X_(12) (X_1,X_5)-harmonic conjugate of X_(11)
circumcircle first Lemoine circle X_(1342) insimilicenter(circumcircle, 1st Lemoine circle)
circumcircle Gallatly circle X_(1690) inverse-in-Brocard-circle of X(1688)
circumcircle incircle X_(55) insimilicenter(circumcircle, incircle)
circumcircle Moses circle X_(574) harmonic of X(187)
circumcircle orthocentroidal circle X_(1344) insimilicenter(circumcircle, orthocentroidal circle)
circumcircle sine-triple-angle circle X_(184) inverse of X(125) in the Brocard circle
circumcircle Spieker circle X_(958) intersection of lines X(1)X(6) and X(2)X(12)
cosine circle first Lemoine circle X_(1687) insimilicenter(1st Lemoine circle, 2nd Lemoine circle)
cosine circle Gallatly circle X_(1671) inverse-in-Brocard-circle of X_(1343)
cosine circle incircle X_(1124) isogonal conjugate of X_(1123)
cosine circle Moses circle X_(1504) insimilicenter(Moses circle, second Lemoine circle)
excircles radical circle incircle X_(2534) insimilicenter(excircles radical circle, incircle)
excircles radical circle nine-point circle X_(2540) insimilicenter(excircles radical circle, nine-point circle)
extangents circle intangents circle X_(55) insimilicenter(extangents circle, intangents circle)
first Johnson-Yff circle incircle X_(388) (X_1,X_4) intersection (X_7,X_8)
first Johnson-Yff circle second Johnson-Yff circle X_1 incenter I
first Johnson-Yff circle Spieker circle X_(377) intersection of (X_7,X_8) and the Euler line
first Lemoine circle Gallatly circle X_(371) Kenmotu point (congruent squares point)
first Lemoine circle incircle X_(1672) insimilicenter(incircle, 1st Lemoine circle)
first Lemoine circle Moses circle X_(2035) insimilicenter(Moses circle, 1st Lemoine circle)
first Lemoine circle nine-point circle X_(1676) insimilicenter(first Lemoine circle, nine-point circle)
first Lemoine circle orthocentroidal circle X_(2471) insimilicenter(first Lemoine circle, orthocentroidal circle)
first Lemoine circle second Brocard circle X_(2558) insimilicenter(first Lemoine circle, second Brocard circle)
first Lemoine circle Spieker circle X_(1680) insimilicenter(first Lemoine circle, Spieker circle)
Gallatly circle incircle X_(2007) insimilicenter(Gallatly circle, incircle)
Gallatly circle nine-point circle X_(2009) insimilicenter(Gallatly circle, nine-point circle)
Gallatly circle orthocentroidal circle X_(2015) insimilicenter(Gallatly circle, orthocentroidal circle)
Gallatly circle second Brocard circle X_(2562) insimilicenter(Gallatly circle, second Brocard circle)
Gallatly circle Spieker circle X_(2013) insimilicenter(Gallatly circle, Spieker circle)
half-Moses circle incircle X_(2276) X_2-isoconjugate of X_(985)
half-Moses circle Spieker circle X_(1107) crosspoint of X_1 and X_(274)
incircle Moses circle X_(1500) insimilicenter(incircle, Moses circle)
incircle nine-point circle X_(12) (X_1,X_5)-harmonic conjugate of X_(11)
incircle orthocentroidal circle X_(2463) insimilicenter(incircle, orthocentroidal circle)
incircle second Brocard circle X_(2564) insimilicenter(incircle, second Brocard circle)
incircle second Johnson-Yff circle X_(497) crosspoint of Ge and Na
incircle sine-triple-angle circle X_(2477) exsimilicenter(incircle, sine-triple-angle circle)
Moses circle nine-point circle X_(1506) insimilicenter(Moses circle, nine-point circle)
Moses circle Spieker circle X_(1573) insimilicenter(Moses circle, Spieker circle)
nine-point circle orthocentroidal circle X_(1346) insimilicenter(nine-point circle, orthocentroidal circle)
nine-point circle second Brocard circle X_(2566) insimilicenter(nine-point circle, second Brocard circle)
nine-point circle second Johnson-Yff circle X_(55) insimilicenter(nine-point circle, second Johnson-Yff circle)
nine-point circle Spieker circle X_(2886) complementary conjugate X_9
orthocentroidal circle second Brocard circle X_(2570) insimilicenter(orthocentroidal circle, second Brocard circle)
orthocentroidal circle Spieker circle X_(2467) insimilicenter(orthocentroidal circle, Spieker circle)
second Brocard circle Spieker circle X_(2568) insimilicenter(second Brocard circle, Spieker circle)
second Johnson-Yff circle Spieker circle X_(2478) inverse-in-orthocentroidal-circle of X_(377)

See also

External Similitude Center, Homothetic Center, Midcircle, Similitude Center

Explore with Wolfram|Alpha

WolframAlpha

References

Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Encyclopedia of Triangle Centers: X(55)=Internal Center of Similitude of Circumcircle and Incircle." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X55.

Referenced on Wolfram|Alpha

Internal Similitude Center

Cite this as:

Weisstein, Eric W. "Internal Similitude Center." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/InternalSimilitudeCenter.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /