TOPICS
Search

Excentral Triangle


ExcentralTriangle

The excentral triangle, also called the tritangent triangle, of a triangle DeltaABC is the triangle J=DeltaJ_AJ_BJ_C with vertices corresponding to the excenters of DeltaABC.

It is the anticevian triangle with respect to the incenter I (Kimberling 1998, p. 157), and also the antipedal triangle with respect to I.

The circumcircle of the excentral triangle is the Bevan circle.

Its trilinear vertex matrix is

The excentral triangle has side lengths

a^' = acsc(1/2A)
(2)
b^' = bcsc(1/2B)
(3)
c^' = ccsc(1/2C),
(4)

and area

where Delta, r, and s are the area, inradius, and semiperimeter of the original triangle DeltaABC, respectively. It therefore has the same side lengths and area as the hexyl triangle.

The excentral triangle is perspective to every Cevian triangle (Kimberling 1998, p. 157).

The excentral-hexyl ellipse passes through the vertex of the excentral and hexyl triangles.

ExcentralTrianglesNested

Beginning with an arbitrary triangle Delta, find the excentral triangle J. Then find the excentral triangle J^' of that triangle, and so on. Then the resulting triangle J^((infty)) approaches an equilateral triangle (Johnson 1929, p. 185; Goldoni 2003). The analogous result also holds for iterative construction of contact triangles (Goldoni 2003).

ExcentralTriangleLine

Given a triangle DeltaABC, draw the excentral triangle DeltaJ_AJ_BJ_C and medial triangle DeltaM_AM_BM_C. Then the orthocenter H of DeltaABC, incenter I_m of DeltaM_AM_BM_C, and circumcenter O_e of DeltaJ_AJ_BJ_C are collinear with I_m the midpoint of HO_e (Honsberger 1995).

ExcentralIncircleLine

The incenter I of DeltaABC coincides with the orthocenter H_e of DeltaJ_AJ_BJ_C, and the circumcenter O of DeltaABC coincides with the nine-point center N_e of DeltaJ_AJ_BJ_C. Furthermore, N_e=O is the midpoint of the line segment joining the orthocenter H_e and circumcenter O_e of DeltaJ_AJ_BJ_C (Honsberger 1995).

The following table gives the centers of the excentral triangle in terms of the centers of the reference triangle for Kimberling centers X_n with n<=100.

X_n center of excentral triangle X_n center of reference triangle
X_1 incenter X_(164) incenter of excentral triangle
X_2 triangle centroid X_(165) triangle centroid of the excentral triangle
X_7 Gergonne point X_(166) Gergonne point of excentral triangle
X_8 Nagel point X_(167) Nagel point of excentral triangle
X_9 mittenpunkt X_(168) mittenpunkt of excentral triangle
X_(15) first isodynamic point X_(1277) third Evans perspector
X_(16) second isodynamic point X_(1276) second Evans perspector
X_(24) perspector of abc and orthic-of-orthic triangle X_(46) X_4-Ceva conjugate of X_1
X_(25) homothetic center of orthic and tangential triangles X_(57) isogonal conjugate of X_9
X_(30) Euler infinity point X_(517) isogonal conjugate of X_(104)
X_(31) second power point X_(362) congruent circumcircles isoscelizer point
X_(32) third power point X_(169) X_(85)-Ceva conjugate of X_1
X_(33) perspector of the orthic and intangents triangles X_(258) congruent incircles isoscelizer point
X_(46) X_4-Ceva conjugate of X_1 X_(505) third isoscelizer point
X_(48) crosspoint of X_1 and X_(63) X_(504) second isoscelizer point
X_(54) Kosnita point X_(191) X_(10)-Ceva conjugate of X_1
X_(57) isogonal conjugate of X_9 X_(363) equal perimeters isoscelizer point
X_(63) isogonal conjugate of X_(19) X_(845) intersection of lines X_(165)X_(166) and X_(173)X_(503)
X_(64) isogonal conjugate of X_(20) X_(2136) eigentransform of X_(57)
X_(65) orthocenter of the contact triangle X_(188) second mid-arc point of anticomplementary triangle
X_(68) Prasolov point X_(1490) intersection of lines X_1X_4 and X_3X_9
X_(69) symmedian point of the anticomplementary triangle X_(2951) excentral isogonal conjugate of X_(57)
X_(75) isotomic conjugate of incenter X_(844) intersection of lines X_(166)X_(167) and X_(173)X_(503)
X_(76) third Brocard point X_(170) X_9-aleph conjugate of X_9
X_(92) Cevapoint of incenter and Clawson point X_(503) first isoscelizer point
X_(95) Cevapoint of triangle centroid and circumcenter X_(2938) excentral isogonal conjugate of X_2
X_(96) isogonal conjugate of X_(52) X_(2939) excentral isogonal conjugate of X_4
X_(97) isogonal conjugate of X_(53) X_(2941) excentral isogonal conjugate of X_6
X_(98) Tarry point X_(1282) 5th Sharygin point

See also

Bevan Circle, Excenter, Excenter-Excenter Circle, Excentral-Hexyl Ellipse, Excircles, Extouch Triangle, Gergonne Point, Hexyl Triangle, Mittenpunkt, Soddy Circles

Explore with Wolfram|Alpha

WolframAlpha

References

Goldoni, G. "Problem 10993." Amer. Math. Monthly 110, 155, 2003.Honsberger, R. "A Trio of Nested Triangles." §3.2 in Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 27-30, 1995.Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, 1929.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.

Referenced on Wolfram|Alpha

Excentral Triangle

Cite this as:

Weisstein, Eric W. "Excentral Triangle." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/ExcentralTriangle.html

Subject classifications

AltStyle によって変換されたページ (->オリジナル) /