BBP Formula
The BBP (named after Bailey-Borwein-Plouffe) is a formula for calculating pi discovered by Simon Plouffe in 1995,
Amazingly, this formula is a digit-extraction algorithm for pi in base 16.
Following the discovery of this and related formulas, similar formulas in other bases were investigated. This class of formulas are now known as BBP-type formulas.
See also
BBP-Type Formula, PiExplore with Wolfram|Alpha
WolframAlpha
More things to try:
References
Adamchik, V. and Wagon, S. "A Simple Formula for pi." Amer. Math. Monthly 104, 852-855, 1997.Adamchik, V. and Wagon, S. "Pi: A 2000-Year Search Changes Direction." http://www-2.cs.cmu.edu/~adamchik/articles/pi.htm.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, p. 31, 2007.Bailey, D. H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.Bailey, D. H. "nth digit of pi" math-fun@cs.arizona.edu mailing list. 31 Oct 2002.Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.Bailey, D. H.; Borwein, J. M.; Kapoor, V.; and Weisstein, E. W. "Ten Problems in Experimental Mathematics." Amer. Math. Monthly 113, 481-509, 2006.Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, 2003.Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.Gourdon, X. and Sebah, P. "Collection of Series for pi." http://numbers.computation.free.fr/Constants/Pi/piSeries.html.Plouffe, S. "The Story Behind a Formula for Pi." sci.math and sci.math.symbolic newsgroup posting. 23 Jun 2003.Referenced on Wolfram|Alpha
BBP FormulaCite this as:
Weisstein, Eric W. "BBP Formula." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/BBPFormula.html