BBP-Type Formula
A base-b BBP-type formula is a convergent series formula of the type
where p(k) and q(k) are integer polynomials in k (Bailey 2000; Borwein and Bailey 2003, pp. 54 and 128-129).
Bailey (2000) and Borwein and Bailey (2003, pp. 128-129) give a collection of such formulas. The following extends those compilations to include several additional BBP-type formulas.
where K is Catalan's constant, Cl_2(pi/3) is the hyperbolic volume of the figure eight knot complement, Cl_2(x) is Clausen's integral, and Cl_2(pi/3) is also the hyperbolic volume of the knot complement of the figure eight knot.
Another example is the Dirichlet L-series
| L_(-7)(2)=sum_(n=0)^infty[1/((7n+1)^2)+1/((7n+2)^2)-1/((7n+3)^2)+1/((7n+4)^2)-1/((7n+5)^2)-1/((7n+6)^2)] |
(32)
|
(Bailey and Borwein 2005; Bailey et al. 2007, pp. 5 and 62).
Note that this sort of sum is closely related to the polygamma function since, for example, the above sum can also be written
| L_(-7)(2)=1/(49)[psi_1(1/7)+psi_1(2/7)-psi_1(3/7)+psi_1(4/7)-psi_1(5/7)-psi_1(6/7)]. |
(33)
|
Borwein et al. (2004) have recently shown that pi has no Machin-type BBP arctangent formula that is not binary, although this does not rule out a completely different scheme for digit-extraction algorithms in other bases.
A beautiful example of a BBP-type formula in a non-integer base is
| pi^2=50sum_(k=0)^infty1/(phi^(5k))[(phi^(-2))/((5k+1)^2)-(phi^(-1))/((5k+2)^2)-(phi^(-2))/((5k+3)^2)+(phi^(-5))/((5k+4)^2)+(2phi^(-5))/((5k+5)^2)], |
(34)
|
where phi is the golden ratio, found by B. Cloitre (Cloitre; Borwein and Chamberland 2005; Bailey et al. 2007, p. 277).
See also
Apéry's Constant, BBP Formula, Catalan's Constant, Digit-Extraction Algorithm, Dirichlet L-Series, Inverse Sine, Natural Logarithm of 2, Pi, Pi Formulas, Spigot Algorithm, ZeroExplore with Wolfram|Alpha
More things to try:
References
Adamchik, V. and Wagon, S. "A Simple Formula for pi." Amer. Math. Monthly 104, 852-855, 1997.Adamchik, V. and Wagon, S. "Pi: A 2000-Year Search Changes Direction." http://www-2.cs.cmu.edu/~adamchik/articles/pi.htm.Bailey, D. H. "A Compendium of BBP-Type Formulas for Mathematical Constants." 28 Nov 2000. http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf.Bailey, D. H. and Borwein, J. M. "Experimental Mathematics: Examples, Methods, and Implications." Not. Amer. Math. Soc. 52, 502-514, 2005.Bailey, D. H.; Borwein, J. M.; Calkin, N. J.; Girgensohn, R.; Luke, D. R.; and Moll, V. H. Experimental Mathematics in Action. Wellesley, MA: A K Peters, pp. 31-33 and 222, 2007.Bailey, D. H.; Borwein, P. B.; and Plouffe, S. "On the Rapid Computation of Various Polylogarithmic Constants." Math. Comput. 66, 903-913, 1997.Borwein, J. and Bailey, D. "Other BBP-Type Formulas" and "Does Pi Have a Nonbinary BBP Formula?" §3.6 and 3.7 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 127-133, 2003.Borwein, J. M.; Borwein, D.; and Galway, W. F. "Finding and Excluding b-ary Machin-Type Individual Digit Formulae." Canad. J. Math. 56, 897-925, 2004.Borwein, J. M. and Chamberland, M. "A Golden Example." Unpublished manuscript. Feb. 7, 2005.Cloitre, B. "A BBP Formula for pi^2 in Golden Base." Unpublished manuscript. Undated.Finch, S. R. "Archimedes' Constant." §1.4 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 17-28, 2003.Gourévitch, B. "L'univers de pi. §6: Formules BBP en base 2: s in N, v=p/q, x=1/(2^n) dans Psi." http://www.pi314.net/hypergse6.php.Plouffe, S. "The Story Behind a Formula for Pi." sci.math and sci.math.symbolic newsgroup posting. 23 Jun 2003.Referenced on Wolfram|Alpha
BBP-Type FormulaCite this as:
Weisstein, Eric W. "BBP-Type Formula." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/BBP-TypeFormula.html