3. Sequences of Numbers
3.1. Sequences
So far we have introduced sets as well as the number systems that we will use in this text. Next, we will study sequences of numbers. Sequences are, basically, countably many numbers arranged in an order that may or may not exhibit certain patterns. Here is the formal definition of a sequence:We now want to describe what the long-term behavior, or pattern, of a sequence is, if any.
| aj - c | <The number c is called the limit of the sequence and we sometimes write aj c.
If a sequence does not converge, then we say that it diverges.
We are going to establish several properties of convergent sequences, most of which are probably familiar to you. Many proofs will use an ' argument' as in the proof of the next result. This type of argument is not easy to get used to, but it will appear again and again, so that you should try to get as familiar with it as you can.
- Their sum is convergent to a + b, and the sequences can be added term by term.
- Their product is convergent to a * b, and the sequences can be multiplied term by term.
- Their quotient is convergent to a / b, provide that b # 0, and the sequences can be divided term by term (if the denominators are not zero).
- If an bn for all n, then a b
This theorem states exactly what you would expect to be true. The proof of it employs the standard trick of 'adding zero' and using the triangle inequality. Try to prove it on your own before looking it up.
Note that the fourth statement is no longer true for strict inequalities. In other words, there are convergent sequences with an < bn for all n, but strict inequality is no longer true for their limits. Can you find an example ?
While we now know how to deal with convergent sequences, we still need an easy criteria that will tell us whether a sequence converges. The next proposition gives reasonable easy conditions, but will not tell us the actual limit of the convergent sequence.
First, recall the following definitions:
A sequence is called monotone decreasing if aj aj + 1 for all j.
- Monotone increasing:
- aj + 1 aj
- aj + 1 - aj 0
- aj + 1 / aj 1, if aj > 0
- Monotone decreasing:
- aj + 1 aj
- aj + 1 - aj 0
- aj + 1 / aj 1, if aj > 0
- If a sequence is
bounded above, then c = sup(xk) is finite. Moreover,
given any > 0, there exists
at least one integer k such that
xk > c - , as
illustrated in the picture.
- If a sequence is
bounded below, then c = inf(xk) is finite. Moreover,
given any > 0, there
exists at least one integer k such that
xk < c + ,
as illustrated in the picture.
Using this result it is often easy to prove convergence of a sequence just by showing that it is bounded and monotone. The downside is that this method will not reveal the actual limit, just prove that there is one.
- Prove that the sequences and converge. What is their limit?
- Define x1 = b and let xn = xn - 1 / 2 for all n > 1. Prove that this sequence converges for any number b. What is the limit ?
-
Let a > 0 and x0 > 0 and define
the recursive sequence
xn+1 = 1/2 (xn + a / xn)
Show that this sequence converges to the square root of a regardless of the starting point x0 > 0.