| Portability | portable |
|---|---|
| Stability | experimental |
| Maintainer | ross@soi.city.ac.uk |
| Safe Haskell | Safe-Infered |
Control.Monad.Trans.State.Lazy
Contents
Description
Lazy state monads, passing an updatable state through a computation. See below for examples.
In this version, sequencing of computations is lazy. For a strict version, see Control.Monad.Trans.State.Strict, which has the same interface.
Some computations may not require the full power of state transformers:
- For a read-only state, see Control.Monad.Trans.Reader.
- To accumulate a value without using it on the way, see Control.Monad.Trans.Writer.
Synopsis
- type State s = StateT s Identity
- state :: Monad m => (s -> (a, s)) -> StateT s m a
- runState :: State s a -> s -> (a, s)
- evalState :: State s a -> s -> a
- execState :: State s a -> s -> s
- mapState :: ((a, s) -> (b, s)) -> State s a -> State s b
- withState :: (s -> s) -> State s a -> State s a
- newtype StateT s m a = StateT {
- runStateT :: s -> m (a, s)
- evalStateT :: Monad m => StateT s m a -> s -> m a
- execStateT :: Monad m => StateT s m a -> s -> m s
- mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b
- withStateT :: (s -> s) -> StateT s m a -> StateT s m a
- get :: Monad m => StateT s m s
- put :: Monad m => s -> StateT s m ()
- modify :: Monad m => (s -> s) -> StateT s m ()
- gets :: Monad m => (s -> a) -> StateT s m a
- liftCallCC :: ((((a, s) -> m (b, s)) -> m (a, s)) -> m (a, s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m a
- liftCallCC' :: ((((a, s) -> m (b, s)) -> m (a, s)) -> m (a, s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m a
- liftCatch :: (m (a, s) -> (e -> m (a, s)) -> m (a, s)) -> StateT s m a -> (e -> StateT s m a) -> StateT s m a
- liftListen :: Monad m => (m (a, s) -> m ((a, s), w)) -> StateT s m a -> StateT s m (a, w)
- liftPass :: Monad m => (m ((a, s), b) -> m (a, s)) -> StateT s m (a, b) -> StateT s m a
The State monad
type State s = StateT s Identity Source
A state monad parameterized by the type s of the state to carry.
The return function leaves the state unchanged, while >>= uses
the final state of the first computation as the initial state of
the second.
Arguments
pure state transformer
equivalent state-passing computation
Construct a state monad computation from a function.
(The inverse of runState .)
Arguments
state-passing computation to execute
initial state
return value and final state
Unwrap a state monad computation as a function.
(The inverse of state .)
Arguments
state-passing computation to execute
initial value
return value of the state computation
The StateT monad transformer
A state transformer monad parameterized by:
-
s- The state. -
m- The inner monad.
The return function leaves the state unchanged, while >>= uses
the final state of the first computation as the initial state of
the second.
Instances
evalStateT :: Monad m => StateT s m a -> s -> m aSource
Evaluate a state computation with the given initial state and return the final value, discarding the final state.
evalStateTm s =liftMfst(runStateTm s)
execStateT :: Monad m => StateT s m a -> s -> m sSource
Evaluate a state computation with the given initial state and return the final state, discarding the final value.
execStateTm s =liftMsnd(runStateTm s)
withStateT :: (s -> s) -> StateT s m a -> StateT s m aSource
executes action withStateT f mm on a state modified by
applying f.
withStateTf m =modifyf >> m
State operations
Lifting other operations
liftCallCC :: ((((a, s) -> m (b, s)) -> m (a, s)) -> m (a, s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m aSource
Uniform lifting of a callCC operation to the new monad.
This version rolls back to the original state on entering the
continuation.
liftCallCC' :: ((((a, s) -> m (b, s)) -> m (a, s)) -> m (a, s)) -> ((a -> StateT s m b) -> StateT s m a) -> StateT s m aSource
In-situ lifting of a callCC operation to the new monad.
This version uses the current state on entering the continuation.
It does not satisfy the laws of a monad transformer.
liftCatch :: (m (a, s) -> (e -> m (a, s)) -> m (a, s)) -> StateT s m a -> (e -> StateT s m a) -> StateT s m aSource
Lift a catchError operation to the new monad.
liftListen :: Monad m => (m (a, s) -> m ((a, s), w)) -> StateT s m a -> StateT s m (a, w)Source
Lift a listen operation to the new monad.
liftPass :: Monad m => (m ((a, s), b) -> m (a, s)) -> StateT s m (a, b) -> StateT s m aSource
Lift a pass operation to the new monad.
Examples
State monads
Parser from ParseLib with Hugs:
type Parser a = StateT String [] a ==> StateT (String -> [(a,String)])
For example, item can be written as:
item = do (x:xs) <- get put xs return x type BoringState s a = StateT s Identity a ==> StateT (s -> Identity (a,s)) type StateWithIO s a = StateT s IO a ==> StateT (s -> IO (a,s)) type StateWithErr s a = StateT s Maybe a ==> StateT (s -> Maybe (a,s))
Counting
A function to increment a counter. Taken from the paper "Generalising Monads to Arrows", John Hughes (http://www.cse.chalmers.se/~rjmh/), November 1998:
tick :: State Int Int tick = do n <- get put (n+1) return n
Add one to the given number using the state monad:
plusOne :: Int -> Int plusOne n = execState tick n
A contrived addition example. Works only with positive numbers:
plus :: Int -> Int -> Int plus n x = execState (sequence $ replicate n tick) x
Labelling trees
An example from The Craft of Functional Programming, Simon Thompson (http://www.cs.kent.ac.uk/people/staff/sjt/), Addison-Wesley 1999: "Given an arbitrary tree, transform it to a tree of integers in which the original elements are replaced by natural numbers, starting from 0. The same element has to be replaced by the same number at every occurrence, and when we meet an as-yet-unvisited element we have to find a 'new' number to match it with:"
data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq) type Table a = [a]
numberTree :: Eq a => Tree a -> State (Table a) (Tree Int) numberTree Nil = return Nil numberTree (Node x t1 t2) = do num <- numberNode x nt1 <- numberTree t1 nt2 <- numberTree t2 return (Node num nt1 nt2) where numberNode :: Eq a => a -> State (Table a) Int numberNode x = do table <- get (newTable, newPos) <- return (nNode x table) put newTable return newPos nNode:: (Eq a) => a -> Table a -> (Table a, Int) nNode x table = case (findIndexInList (== x) table) of Nothing -> (table ++ [x], length table) Just i -> (table, i) findIndexInList :: (a -> Bool) -> [a] -> Maybe Int findIndexInList = findIndexInListHelp 0 findIndexInListHelp _ _ [] = Nothing findIndexInListHelp count f (h:t) = if (f h) then Just count else findIndexInListHelp (count+1) f t
numTree applies numberTree with an initial state:
numTree :: (Eq a) => Tree a -> Tree Int numTree t = evalState (numberTree t) []
testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil
sumTree is a little helper function that does not use the State monad:
sumTree :: (Num a) => Tree a -> a sumTree Nil = 0 sumTree (Node e t1 t2) = e + (sumTree t1) + (sumTree t2)