template-haskell-2.7.0.0

Safe HaskellSafe-Infered

Language.Haskell.TH

Description

The public face of Template Haskell

For other documentation, refer to: http://www.haskell.org/haskellwiki/Template_Haskell

Synopsis

The monad and its operations

data Q a Source

Instances

runQ :: Quasi m => Q a -> m aSource

report :: Bool -> String -> Q () Source

recover Source

Arguments

:: Q a

recover with this one

-> Q a

failing action

-> Q a

reify :: Name -> Q Info Source

reify looks up information about the Name

location :: Q Loc Source

location gives you the Location at which this computation is spliced.

runIO :: IO a -> Q aSource

The runIO function lets you run an I/O computation in the Q monad. Take care: you are guaranteed the ordering of calls to runIO within a single Q computation, but not about the order in which splices are run.

Note: for various murky reasons, stdout and stderr handles are not necesarily flushed when the compiler finishes running, so you should flush them yourself.

lookupTypeName, lookupValueName :: String -> Q (Maybe Name)Source

isInstance :: Name -> [Type] -> Q Bool Source

reifyInstances :: Name -> [Type] -> Q [Dec]Source

classInstances looks up instaces of a class

Names

data Name Source

For global names (NameG ) we need a totally unique name, so we must include the name-space of the thing

For unique-numbered things (NameU ), we've got a unique reference anyway, so no need for name space

For dynamically bound thing (NameS ) we probably want them to in a context-dependent way, so again we don't want the name space. For example:

 let v = mkName "T" in [| data $v = $v |]

Here we use the same Name for both type constructor and data constructor

NameL and NameG are bound *outside* the TH syntax tree either globally (NameG) or locally (NameL). Ex:

 f x = $(h [| (map, x) |])

The map will be a NameG, and x wil be a NameL

These Names should never appear in a binding position in a TH syntax tree

Instances

data NameSpace Source

Instances

mkName :: String -> Name Source

The string can have a . , thus Foo.baz, giving a dynamically-bound qualified name, in which case we want to generate a NameQ

Parse the string to see if it has a . in it so we know whether to generate a qualified or unqualified name It's a bit tricky because we need to parse

 Foo.Baz.x as Qual Foo.Baz x

So we parse it from back to front

newName :: String -> Q Name Source

nameBase :: Name -> String Source

Base, unqualified name.

nameModule :: Name -> Maybe String Source

tupleTypeName Source

Arguments

:: Int
-> Name

Type constructor

tupleDataName Source

Arguments

:: Int
-> Name

Data constructor

The algebraic data types

The lowercase versions (syntax operators) of these constructors are preferred to these constructors, since they compose better with quotations ([| |]) and splices ($( ... ))

data Dec Source

Constructors

FunD Name [Clause]
{ f p1 p2 = b where decs }
ValD Pat Body [Dec]
{ p = b where decs }
DataD Cxt Name [TyVarBndr] [Con] [Name]
{ data Cxt x => T x = A x | B (T x)
 deriving (Z,W)}
NewtypeD Cxt Name [TyVarBndr] Con [Name]
{ newtype Cxt x => T x = A (B x)
 deriving (Z,W)}
TySynD Name [TyVarBndr] Type
{ type T x = (x,x) }
ClassD Cxt Name [TyVarBndr] [FunDep] [Dec]
{ class Eq a => Ord a where ds }
InstanceD Cxt Type [Dec]
{ instance Show w => Show [w]
 where ds }
SigD Name Type
{ length :: [a] -> Int }
PragmaD Pragma
{ {--} }
FamilyD FamFlavour Name [TyVarBndr] (Maybe Kind)
{ type family T a b c :: * }
DataInstD Cxt Name [Type] [Con] [Name]
{ data instance Cxt x => T [x] = A x 
 | B (T x)
 deriving (Z,W)}
NewtypeInstD Cxt Name [Type] Con [Name]
{ newtype instance Cxt x => T [x] = A (B x)
 deriving (Z,W)}
TySynInstD Name [Type] Type
{ type instance T (Maybe x) = (x,x) }

Instances

data Exp Source

The CompE constructor represents a list comprehension, and takes a [Stmt ]. The result expression of the comprehension is the *last* of these, and should be a NoBindS .

E.g. translation:

 [ f x | x <- xs ]
 CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]

Constructors

VarE Name
{ x }
ConE Name
data T1 = C1 t1 t2; p = {C1} e1 e2
LitE Lit
{ 5 or c}
AppE Exp Exp
{ f x }
InfixE (Maybe Exp) Exp (Maybe Exp)
{x + y} or {(x+)} or {(+ x)} or {(+)}

It's a bit gruesome to use an Exp as the operator, but how else can we distinguish constructors from non-constructors? Maybe there should be a var-or-con type? Or maybe we should leave it to the String itself?

UInfixE Exp Exp Exp
{x + y}

See Note [Unresolved infix] at Language.Haskell.TH.Syntax

ParensE Exp
{ (e) }

See Note [Unresolved infix] at Language.Haskell.TH.Syntax

LamE [Pat] Exp
{ p1 p2 -> e }
TupE [Exp]
{ (e1,e2) }
UnboxedTupE [Exp]
{ () }
CondE Exp Exp Exp
{ if e1 then e2 else e3 }
LetE [Dec] Exp
{ let x=e1; y=e2 in e3 }
CaseE Exp [Match]
{ case e of m1; m2 }
DoE [Stmt]
{ do { p <- e1; e2 } }
CompE [Stmt]
{ [ (x,y) | x <- xs, y <- ys ] }
ArithSeqE Range
{ [ 1 ,2 .. 10 ] }
ListE [Exp]
{ [1,2,3] }
SigE Exp Type
{ e :: t }
RecConE Name [FieldExp]
{ T { x = y, z = w } }
RecUpdE Exp [FieldExp]
{ (f x) { z = w } }

Instances

data Con Source

Constructors

RecC Name [VarStrictType]
C { v :: Int, w :: a }
ForallC [TyVarBndr] Cxt Con
forall a. Eq a => C [a]

Instances

data Type Source

Constructors

TupleT Int
(,), (,,), etc.
UnboxedTupleT Int
(), (), etc.
ArrowT
->
ListT
[]
AppT Type Type
T a b
SigT Type Kind
t :: k

Instances

data TyVarBndr Source

Constructors

KindedTV Name Kind
(a :: k)

Instances

data Kind Source

Constructors

ArrowK Kind Kind
k1 -> k2

Instances

type Cxt Source

Arguments

= [Pred]
(Eq a, Ord b)

data Pred Source

Constructors

ClassP Name [Type]
Eq (Int, a)
EqualP Type Type
F a ~ Bool

Instances

data Match Source

Constructors

Match Pat Body [Dec]
case e of { pat -> body where decs }

Instances

data Clause Source

Constructors

Clause [Pat] Body [Dec]
f { p1 p2 = body where decs }

Instances

data Body Source

Constructors

GuardedB [(Guard, Exp)]
f p { | e1 = e2 | e3 = e4 } where ds
NormalB Exp
f p { = e } where ds

Instances

data Guard Source

Constructors

Instances

data Stmt Source

Constructors

LetS [Dec]
ParS [[Stmt]]

Instances

data Range Source

Constructors

Instances

data Lit Source

Constructors

IntegerL Integer

Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter?

StringPrimL String

A primitive C-style string, type Addr#

Instances

data Pat Source

Pattern in Haskell given in {}

Constructors

LitP Lit
{ 5 or c }
VarP Name
{ x }
TupP [Pat]
{ (p1,p2) }
UnboxedTupP [Pat]
{ () }
ConP Name [Pat]
data T1 = C1 t1 t2; {C1 p1 p1} = e
InfixP Pat Name Pat
foo ({x :+ y}) = e
UInfixP Pat Name Pat
foo ({x :+ y}) = e

See Note [Unresolved infix] at Language.Haskell.TH.Syntax

ParensP Pat
{(p)}

See Note [Unresolved infix] at Language.Haskell.TH.Syntax

TildeP Pat
{ ~p }
BangP Pat
{ !p }
AsP Name Pat
{ x @ p }
WildP
{ _ }
RecP Name [FieldPat]
f (Pt { pointx = x }) = g x
ListP [Pat]
{ [1,2,3] }
SigP Pat Type
{ p :: t }
ViewP Exp Pat
{ e -> p }

Instances

type FieldExp = (Name, Exp)Source

type FieldPat = (Name, Pat)Source

data Strict Source

Constructors

Instances

data Foreign Source

Constructors

Instances

data Callconv Source

Constructors

Instances

data Safety Source

Constructors

Instances

data Pragma Source

Constructors

Instances

data InlineSpec Source

Constructors

Instances

data FunDep Source

Constructors

Instances

data FamFlavour Source

Constructors

Instances

data Info Source

Obtained from reify in the Q Monad.

Constructors

ClassI Dec [InstanceDec]

A class is reified to its declaration and a list of its instances

FamilyI Dec [InstanceDec]

Instances

data Loc Source

Constructors

Loc

data Fixity Source

Constructors

Instances

data FixityDirection Source

Constructors

Instances

defaultFixity :: Fixity Source

maxPrecedence :: Int Source

Library functions

Abbreviations

type InfoQ = Q Info Source

type ExpQ = Q Exp Source

type DecQ = Q Dec Source

type DecsQ = Q [Dec]Source

type ConQ = Q Con Source

type TypeQ = Q Type Source

type CxtQ = Q Cxt Source

type PredQ = Q Pred Source

type MatchQ = Q Match Source

type ClauseQ = Q Clause Source

type BodyQ = Q Body Source

type GuardQ = Q Guard Source

type StmtQ = Q Stmt Source

type RangeQ = Q Range Source

type StrictTypeQ = Q StrictType Source

type VarStrictTypeQ = Q VarStrictType Source

type PatQ = Q Pat Source

type FieldPatQ = Q FieldPat Source

type InlineSpecQ = Q InlineSpec Source

Constructors lifted to Q

Literals

intPrimL :: Integer -> Lit Source

wordPrimL :: Integer -> Lit Source

floatPrimL :: Rational -> Lit Source

doublePrimL :: Rational -> Lit Source

integerL :: Integer -> Lit Source

rationalL :: Rational -> Lit Source

charL :: Char -> Lit Source

stringL :: String -> Lit Source

stringPrimL :: String -> Lit Source

Patterns

litP :: Lit -> PatQ Source

varP :: Name -> PatQ Source

tupP :: [PatQ] -> PatQ Source

conP :: Name -> [PatQ] -> PatQ Source

uInfixP :: PatQ -> Name -> PatQ -> PatQ Source

parensP :: PatQ -> PatQ Source

infixP :: PatQ -> Name -> PatQ -> PatQ Source

tildeP :: PatQ -> PatQ Source

bangP :: PatQ -> PatQ Source

asP :: Name -> PatQ -> PatQ Source

wildP :: PatQ Source

recP :: Name -> [FieldPatQ] -> PatQ Source

listP :: [PatQ] -> PatQ Source

sigP :: PatQ -> TypeQ -> PatQ Source

viewP :: ExpQ -> PatQ -> PatQ Source

fieldPat :: Name -> PatQ -> FieldPatQ Source

Pattern Guards

normalB :: ExpQ -> BodyQ Source

guardedB :: [Q (Guard, Exp)] -> BodyQ Source

normalG :: ExpQ -> GuardQ Source

normalGE :: ExpQ -> ExpQ -> Q (Guard, Exp)Source

patG :: [StmtQ] -> GuardQ Source

patGE :: [StmtQ] -> ExpQ -> Q (Guard, Exp)Source

match :: PatQ -> BodyQ -> [DecQ] -> MatchQ Source

Use with caseE

clause :: [PatQ] -> BodyQ -> [DecQ] -> ClauseQ Source

Use with funD

Expressions

dyn :: String -> Q Exp Source

Dynamically binding a variable (unhygenic)

global :: Name -> ExpQ Source

varE :: Name -> ExpQ Source

conE :: Name -> ExpQ Source

litE :: Lit -> ExpQ Source

appE :: ExpQ -> ExpQ -> ExpQ Source

uInfixE :: ExpQ -> ExpQ -> ExpQ -> ExpQ Source

parensE :: ExpQ -> ExpQ Source

infixE :: Maybe ExpQ -> ExpQ -> Maybe ExpQ -> ExpQ Source

infixApp :: ExpQ -> ExpQ -> ExpQ -> ExpQ Source

sectionL :: ExpQ -> ExpQ -> ExpQ Source

sectionR :: ExpQ -> ExpQ -> ExpQ Source

lamE :: [PatQ] -> ExpQ -> ExpQ Source

lam1E :: PatQ -> ExpQ -> ExpQ Source

Single-arg lambda

tupE :: [ExpQ] -> ExpQ Source

condE :: ExpQ -> ExpQ -> ExpQ -> ExpQ Source

letE :: [DecQ] -> ExpQ -> ExpQ Source

caseE :: ExpQ -> [MatchQ] -> ExpQ Source

appsE :: [ExpQ] -> ExpQ Source

listE :: [ExpQ] -> ExpQ Source

sigE :: ExpQ -> TypeQ -> ExpQ Source

recConE :: Name -> [Q (Name, Exp)] -> ExpQ Source

recUpdE :: ExpQ -> [Q (Name, Exp)] -> ExpQ Source

stringE :: String -> ExpQ Source

fieldExp :: Name -> ExpQ -> Q (Name, Exp)Source

Ranges

fromE :: ExpQ -> ExpQ Source

fromThenE :: ExpQ -> ExpQ -> ExpQ Source

fromToE :: ExpQ -> ExpQ -> ExpQ Source

fromThenToE :: ExpQ -> ExpQ -> ExpQ -> ExpQ Source

Ranges with more indirection

arithSeqE :: RangeQ -> ExpQ Source

fromR :: ExpQ -> RangeQ Source

fromThenR :: ExpQ -> ExpQ -> RangeQ Source

fromToR :: ExpQ -> ExpQ -> RangeQ Source

fromThenToR :: ExpQ -> ExpQ -> ExpQ -> RangeQ Source

Statements

doE :: [StmtQ] -> ExpQ Source

compE :: [StmtQ] -> ExpQ Source

bindS :: PatQ -> ExpQ -> StmtQ Source

letS :: [DecQ] -> StmtQ Source

noBindS :: ExpQ -> StmtQ Source

parS :: [[StmtQ]] -> StmtQ Source

Types

forallT :: [TyVarBndr] -> CxtQ -> TypeQ -> TypeQ Source

varT :: Name -> TypeQ Source

conT :: Name -> TypeQ Source

appT :: TypeQ -> TypeQ -> TypeQ Source

arrowT :: TypeQ Source

listT :: TypeQ Source

tupleT :: Int -> TypeQ Source

sigT :: TypeQ -> Kind -> TypeQ Source

Strictness

isStrict, notStrict :: Q Strict Source

strictType :: Q Strict -> TypeQ -> StrictTypeQ Source

varStrictType :: Name -> StrictTypeQ -> VarStrictTypeQ Source

Class Contexts

cxt :: [PredQ] -> CxtQ Source

classP :: Name -> [TypeQ] -> PredQ Source

equalP :: TypeQ -> TypeQ -> PredQ Source

normalC :: Name -> [StrictTypeQ] -> ConQ Source

recC :: Name -> [VarStrictTypeQ] -> ConQ Source

infixC :: Q (Strict, Type) -> Name -> Q (Strict, Type) -> ConQ Source

Top Level Declarations

Data

valD :: PatQ -> BodyQ -> [DecQ] -> DecQ Source

funD :: Name -> [ClauseQ] -> DecQ Source

tySynD :: Name -> [TyVarBndr] -> TypeQ -> DecQ Source

dataD :: CxtQ -> Name -> [TyVarBndr] -> [ConQ] -> [Name] -> DecQ Source

newtypeD :: CxtQ -> Name -> [TyVarBndr] -> ConQ -> [Name] -> DecQ Source

Class

classD :: CxtQ -> Name -> [TyVarBndr] -> [FunDep] -> [DecQ] -> DecQ Source

instanceD :: CxtQ -> TypeQ -> [DecQ] -> DecQ Source

sigD :: Name -> TypeQ -> DecQ Source

Type Family / Data Family

familyNoKindD :: FamFlavour -> Name -> [TyVarBndr] -> DecQ Source

familyKindD :: FamFlavour -> Name -> [TyVarBndr] -> Kind -> DecQ Source

dataInstD :: CxtQ -> Name -> [TypeQ] -> [ConQ] -> [Name] -> DecQ Source

newtypeInstD :: CxtQ -> Name -> [TypeQ] -> ConQ -> [Name] -> DecQ Source

tySynInstD :: Name -> [TypeQ] -> TypeQ -> DecQ Source

typeFam, dataFam :: FamFlavour Source

Foreign Function Interface (FFI)

cCall, stdCall :: Callconv Source

unsafe, safe :: Safety Source

forImpD :: Callconv -> Safety -> String -> Name -> TypeQ -> DecQ Source

Pragmas

Just inline supported so far

inlineSpecNoPhase :: Bool -> Bool -> InlineSpecQ Source

inlineSpecPhase :: Bool -> Bool -> Bool -> Int -> InlineSpecQ Source

pragInlD :: Name -> InlineSpecQ -> DecQ Source

pragSpecD :: Name -> TypeQ -> DecQ Source

Pretty-printer

class Ppr a whereSource

Methods

ppr :: a -> Doc Source

ppr_list :: [a] -> Doc Source

Instances

pprint :: Ppr a => a -> String Source

pprExp :: Precedence -> Exp -> Doc Source

pprLit :: Precedence -> Lit -> Doc Source

pprPat :: Precedence -> Pat -> Doc Source

pprParendType :: Type -> Doc Source

AltStyle によって変換されたページ (->オリジナル) /