{-# LANGUAGE DeriveTraversable #-}{-# LANGUAGE FlexibleInstances #-}{-# LANGUAGE NoImplicitPrelude #-}{-# LANGUAGE StandaloneDeriving #-}{-# LANGUAGE Trustworthy #-}{-# LANGUAGE TypeOperators #-}------------------------------------------------------------------------------- |-- Module : Data.Traversable-- Copyright : Conor McBride and Ross Paterson 2005-- License : BSD-style (see the LICENSE file in the distribution)---- Maintainer : libraries@haskell.org-- Stability : experimental-- Portability : portable---- Class of data structures that can be traversed from left to right,-- performing an action on each element.---- See also---- * \"Applicative Programming with Effects\",-- by Conor McBride and Ross Paterson,-- /Journal of Functional Programming/ 18:1 (2008) 1-13, online at-- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>.---- * \"The Essence of the Iterator Pattern\",-- by Jeremy Gibbons and Bruno Oliveira,-- in /Mathematically-Structured Functional Programming/, 2006, online at-- <http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator>.---- * \"An Investigation of the Laws of Traversals\",-- by Mauro Jaskelioff and Ondrej Rypacek,-- in /Mathematically-Structured Functional Programming/, 2012, online at-- <http://arxiv.org/pdf/1202.2919>.-------------------------------------------------------------------------------moduleData.Traversable(-- * The 'Traversable' classTraversable (..),-- * Utility functionsfor ,forM ,mapAccumL ,mapAccumR ,-- * General definitions for superclass methodsfmapDefault ,foldMapDefault ,)where-- It is convenient to use 'Const' here but this means we must-- define a few instances here which really belong in Control.ApplicativeimportControl.Applicative (Const (..),ZipList (..))importData.Either (Either (..))importData.Foldable (Foldable )importData.Functor importData.Monoid (Dual (..),Sum (..),Product (..),First (..),Last (..))importData.Proxy (Proxy (..))importGHC.Arr importGHC.Base (Applicative (..),Monad (..),Monoid ,Maybe (..),($ ),(. ),id ,flip )importGHC.Generics importqualifiedGHC.List asList(foldr )-- | Functors representing data structures that can be traversed from-- left to right.---- A definition of 'traverse' must satisfy the following laws:---- [/naturality/]-- @t . 'traverse' f = 'traverse' (t . f)@-- for every applicative transformation @t@---- [/identity/]-- @'traverse' Identity = Identity@---- [/composition/]-- @'traverse' (Compose . 'fmap' g . f) = Compose . 'fmap' ('traverse' g) . 'traverse' f@---- A definition of 'sequenceA' must satisfy the following laws:---- [/naturality/]-- @t . 'sequenceA' = 'sequenceA' . 'fmap' t@-- for every applicative transformation @t@---- [/identity/]-- @'sequenceA' . 'fmap' Identity = Identity@---- [/composition/]-- @'sequenceA' . 'fmap' Compose = Compose . 'fmap' 'sequenceA' . 'sequenceA'@---- where an /applicative transformation/ is a function---- @t :: (Applicative f, Applicative g) => f a -> g a@---- preserving the 'Applicative' operations, i.e.---- * @t ('pure' x) = 'pure' x@---- * @t (x '<*>' y) = t x '<*>' t y@---- and the identity functor @Identity@ and composition of functors @Compose@-- are defined as---- > newtype Identity a = Identity a-- >-- > instance Functor Identity where-- > fmap f (Identity x) = Identity (f x)-- >-- > instance Applicative Identity where-- > pure x = Identity x-- > Identity f <*> Identity x = Identity (f x)-- >-- > newtype Compose f g a = Compose (f (g a))-- >-- > instance (Functor f, Functor g) => Functor (Compose f g) where-- > fmap f (Compose x) = Compose (fmap (fmap f) x)-- >-- > instance (Applicative f, Applicative g) => Applicative (Compose f g) where-- > pure x = Compose (pure (pure x))-- > Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)---- (The naturality law is implied by parametricity.)---- Instances are similar to 'Functor', e.g. given a data type---- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a)---- a suitable instance would be---- > instance Traversable Tree where-- > traverse f Empty = pure Empty-- > traverse f (Leaf x) = Leaf <$> f x-- > traverse f (Node l k r) = Node <$> traverse f l <*> f k <*> traverse f r---- This is suitable even for abstract types, as the laws for '<*>'-- imply a form of associativity.---- The superclass instances should satisfy the following:---- * In the 'Functor' instance, 'fmap' should be equivalent to traversal-- with the identity applicative functor ('fmapDefault').---- * In the 'Foldable' instance, 'Data.Foldable.foldMap' should be-- equivalent to traversal with a constant applicative functor-- ('foldMapDefault').--class(Functor t ,Foldable t )=>Traversable t where{-# MINIMAL traverse | sequenceA #-}-- | Map each element of a structure to an action, evaluate these actions-- from left to right, and collect the results. For a version that ignores-- the results see 'Data.Foldable.traverse_'.traverse::Applicative f =>(a ->f b )->t a ->f (t b )traverse f =sequenceA . fmap f -- | Evaluate each action in the structure from left to right, and-- and collect the results. For a version that ignores the results-- see 'Data.Foldable.sequenceA_'.sequenceA::Applicative f =>t (f a )->f (t a )sequenceA =traverse id -- | Map each element of a structure to a monadic action, evaluate-- these actions from left to right, and collect the results. For-- a version that ignores the results see 'Data.Foldable.mapM_'.mapM::Monad m =>(a ->m b )->t a ->m (t b )mapM =traverse -- | Evaluate each monadic action in the structure from left to-- right, and collect the results. For a version that ignores the-- results see 'Data.Foldable.sequence_'.sequence::Monad m =>t (m a )->m (t a )sequence =sequenceA -- instances for Prelude typesinstanceTraversable Maybe wheretraverse _Nothing =pure Nothing traversef (Just x )=Just <$> f x instanceTraversable []where{-# INLINE traverse #-}-- so that traverse can fusetraverse f =List.foldr cons_f (pure [])wherecons_f x ys =(:)<$> f x <*> ys instanceTraversable (Either a )wheretraverse _(Left x )=pure (Left x )traversef (Right y )=Right <$> f y instanceTraversable ((,)a )wheretraverse f (x ,y )=(,)x <$> f y instanceIx i =>Traversable (Array i )wheretraverse f arr =listArray (bounds arr )`fmap `traverse f (elems arr )instanceTraversable Proxy wheretraverse __=pure Proxy {-# INLINE traverse #-}sequenceA _=pure Proxy {-# INLINE sequenceA #-}mapM __=pure Proxy {-# INLINE mapM #-}sequence _=pure Proxy {-# INLINE sequence #-}instanceTraversable (Const m )wheretraverse _(Const m )=pure $ Const m instanceTraversable Dual wheretraverse f (Dual x )=Dual <$> f x instanceTraversable Sum wheretraverse f (Sum x )=Sum <$> f x instanceTraversable Product wheretraverse f (Product x )=Product <$> f x instanceTraversable First wheretraverse f (First x )=First <$> traverse f x instanceTraversable Last wheretraverse f (Last x )=Last <$> traverse f x instanceTraversable ZipList wheretraverse f (ZipList x )=ZipList <$> traverse f x -- Instances for GHC.GenericsinstanceTraversable U1 wheretraverse __=pure U1 {-# INLINE traverse #-}sequenceA _=pure U1 {-# INLINE sequenceA #-}mapM __=pure U1 {-# INLINE mapM #-}sequence _=pure U1 {-# INLINE sequence #-}derivinginstanceTraversable V1 derivinginstanceTraversable Par1 derivinginstanceTraversable f =>Traversable (Rec1 f )derivinginstanceTraversable (K1 i c )derivinginstanceTraversable f =>Traversable (M1 i c f )derivinginstance(Traversable f ,Traversable g )=>Traversable (f :+:g )derivinginstance(Traversable f ,Traversable g )=>Traversable (f :*:g )derivinginstance(Traversable f ,Traversable g )=>Traversable (f :.:g )derivinginstanceTraversable UAddr derivinginstanceTraversable UChar derivinginstanceTraversable UDouble derivinginstanceTraversable UFloat derivinginstanceTraversable UInt derivinginstanceTraversable UWord -- general functions-- | 'for' is 'traverse' with its arguments flipped. For a version-- that ignores the results see 'Data.Foldable.for_'.for::(Traversable t ,Applicative f )=>t a ->(a ->f b )->f (t b ){-# INLINE for #-}for =flip traverse -- | 'forM' is 'mapM' with its arguments flipped. For a version that-- ignores the results see 'Data.Foldable.forM_'.forM::(Traversable t ,Monad m )=>t a ->(a ->m b )->m (t b ){-# INLINE forM #-}forM =flip mapM -- left-to-right state transformernewtypeStateL s a =StateL {runStateL ::s ->(s ,a )}instanceFunctor (StateL s )wherefmap f (StateL k )=StateL $ \s ->let(s' ,v )=k s in(s' ,f v )instanceApplicative (StateL s )wherepure x =StateL (\s ->(s ,x ))StateL kf <*> StateL kv =StateL $ \s ->let(s' ,f )=kf s (s'' ,v )=kv s' in(s'' ,f v )-- |The 'mapAccumL' function behaves like a combination of 'fmap'-- and 'foldl'; it applies a function to each element of a structure,-- passing an accumulating parameter from left to right, and returning-- a final value of this accumulator together with the new structure.mapAccumL::Traversable t =>(a ->b ->(a ,c ))->a ->t b ->(a ,t c )mapAccumL f s t =runStateL(traverse (StateL . flip f )t )s -- right-to-left state transformernewtypeStateR s a =StateR {runStateR ::s ->(s ,a )}instanceFunctor (StateR s )wherefmap f (StateR k )=StateR $ \s ->let(s' ,v )=k s in(s' ,f v )instanceApplicative (StateR s )wherepure x =StateR (\s ->(s ,x ))StateR kf <*> StateR kv =StateR $ \s ->let(s' ,v )=kv s (s'' ,f )=kf s' in(s'' ,f v )-- |The 'mapAccumR' function behaves like a combination of 'fmap'-- and 'foldr'; it applies a function to each element of a structure,-- passing an accumulating parameter from right to left, and returning-- a final value of this accumulator together with the new structure.mapAccumR::Traversable t =>(a ->b ->(a ,c ))->a ->t b ->(a ,t c )mapAccumR f s t =runStateR(traverse (StateR . flip f )t )s -- | This function may be used as a value for `fmap` in a `Functor`-- instance, provided that 'traverse' is defined. (Using-- `fmapDefault` with a `Traversable` instance defined only by-- 'sequenceA' will result in infinite recursion.)fmapDefault::Traversable t =>(a ->b )->t a ->t b {-# INLINE fmapDefault #-}fmapDefault f =getId. traverse (Id . f )-- | This function may be used as a value for `Data.Foldable.foldMap`-- in a `Foldable` instance.foldMapDefault::(Traversable t ,Monoid m )=>(a ->m )->t a ->m foldMapDefault f =getConst. traverse (Const . f )-- local instancesnewtypeId a =Id {getId ::a }instanceFunctor Id wherefmap f (Id x )=Id (f x )instanceApplicative Id wherepure =Id Id f <*> Id x =Id (f x )

AltStyle によって変換されたページ (->オリジナル) /