base-4.4.1.0: Basic libraries

Portabilityportable
Stabilitystable
Maintainerlibraries@haskell.org

Prelude

Description

The Prelude: a standard module imported by default into all Haskell modules. For more documentation, see the Haskell 98 Report http://www.haskell.org/onlinereport/.

Synopsis

Standard types, classes and related functions

Basic data types

data Bool Source

Constructors

Instances

(&&) :: Bool -> Bool -> Bool Source

Boolean "and"

(||) :: Bool -> Bool -> Bool Source

Boolean "or"

not :: Bool -> Bool Source

Boolean "not"

otherwise :: Bool Source

otherwise is defined as the value True . It helps to make guards more readable. eg.

 f x | x < 0 = ...
 | otherwise = ...

data Maybe a Source

The Maybe type encapsulates an optional value. A value of type Maybe a either contains a value of type a (represented as Just a), or it is empty (represented as Nothing ). Using Maybe is a good way to deal with errors or exceptional cases without resorting to drastic measures such as error .

The Maybe type is also a monad. It is a simple kind of error monad, where all errors are represented by Nothing . A richer error monad can be built using the Data.Either.Either type.

Constructors

Just a

Instances

Eq a => Eq (Maybe a)
Data a => Data (Maybe a)
Ord a => Ord (Maybe a)
Read a => Read (Maybe a)
Show a => Show (Maybe a)
Monoid a => Monoid (Maybe a)

Lift a semigroup into Maybe forming a Monoid according to http://en.wikipedia.org/wiki/Monoid: "Any semigroup S may be turned into a monoid simply by adjoining an element e not in S and defining e*e = e and e*s = s = s*e for all s  S." Since there is no "Semigroup" typeclass providing just mappend , we use Monoid instead.

maybe :: b -> (a -> b) -> Maybe a -> bSource

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing , the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

data Either a b Source

The Either type represents values with two possibilities: a value of type Either a b is either Left a or Right b.

The Either type is sometimes used to represent a value which is either correct or an error; by convention, the Left constructor is used to hold an error value and the Right constructor is used to hold a correct value (mnemonic: "right" also means "correct").

Constructors

Left a
Right b

Instances

(Eq a, Eq b) => Eq (Either a b)
(Data a, Data b) => Data (Either a b)
(Ord a, Ord b) => Ord (Either a b)
(Read a, Read b) => Read (Either a b)
(Show a, Show b) => Show (Either a b)
Generic (Either a b)

either :: (a -> c) -> (b -> c) -> Either a b -> cSource

Case analysis for the Either type. If the value is Left a, apply the first function to a; if it is Right b, apply the second function to b.

data Ordering Source

Constructors

LT
EQ
GT

Instances

data Char Source

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) characters (see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 charachers), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char .

To convert a Char to or from the corresponding Int value defined by Unicode, use Prelude.toEnum and Prelude.fromEnum from the Prelude.Enum class respectively (or equivalently ord and chr).

Instances

type String = [Char]Source

A String is a list of characters. String constants in Haskell are values of type String .

Tuples

fst :: (a, b) -> aSource

Extract the first component of a pair.

snd :: (a, b) -> bSource

Extract the second component of a pair.

curry :: ((a, b) -> c) -> a -> b -> cSource

curry converts an uncurried function to a curried function.

uncurry :: (a -> b -> c) -> (a, b) -> cSource

uncurry converts a curried function to a function on pairs.

Basic type classes

class Eq a whereSource

The Eq class defines equality (== ) and inequality (/= ). All the basic datatypes exported by the Prelude are instances of Eq , and Eq may be derived for any datatype whose constituents are also instances of Eq .

Minimal complete definition: either == or /= .

Methods

(==), (/=) :: a -> a -> Bool Source

Instances

Eq ()
Eq Finalizers
Eq Inserts
Eq HashData
Eq Fd
Eq ControlMessage
Eq EventType
Eq EPollFd
Eq Unique
Eq State
Eq Constr

Equality of constructors

Eq Timeout
Eq Event
Eq a => Eq [a]
Eq a => Eq (Ratio a)
Eq (Ptr a)
Eq (FunPtr a)
Eq a => Eq (Maybe a)
Eq (MVar a)
Eq (IORef a)
Eq a => Eq (Last a)
Eq a => Eq (First a)
Eq a => Eq (Product a)
Eq a => Eq (Sum a)
Eq a => Eq (Dual a)
Eq (TVar a)
Eq a => Eq (IntMap a)
Eq a => Eq (LTree a)
Eq a => Eq (PSQ a)
Eq a => Eq (Elem a)
Eq a => Eq (Down a)
Eq (Chan a)
Eq a => Eq (Complex a)
Eq (Fixed a)
(Eq a, Eq b) => Eq (Either a b)
(Eq a, Eq b) => Eq (a, b)
(Ix i, Eq e) => Eq (Array i e)
Eq (IOArray i e)
Eq (STRef s a)
(Eq a, Eq b, Eq c) => Eq (a, b, c)
Eq (STArray s i e)
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d)
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Eq a => Ord a whereSource

The Ord class is used for totally ordered datatypes.

Instances of Ord can be derived for any user-defined datatype whose constituent types are in Ord . The declared order of the constructors in the data declaration determines the ordering in derived Ord instances. The Ordering datatype allows a single comparison to determine the precise ordering of two objects.

Minimal complete definition: either compare or <= . Using compare can be more efficient for complex types.

Methods

compare :: a -> a -> Ordering Source

(<), (>=), (>), (<=) :: a -> a -> Bool Source

max, min :: a -> a -> aSource

Instances

Ord ()
Ord Unique
Ord a => Ord [a]
Integral a => Ord (Ratio a)
Ord (Ptr a)
Ord (FunPtr a)
Ord a => Ord (Maybe a)
Ord a => Ord (Last a)
Ord a => Ord (First a)
Ord a => Ord (Product a)
Ord a => Ord (Sum a)
Ord a => Ord (Dual a)
Ord a => Ord (Down a)
Ord (Fixed a)
(Ord a, Ord b) => Ord (Either a b)
(Ord a, Ord b) => Ord (a, b)
(Ix i, Ord e) => Ord (Array i e)
(Ord a, Ord b, Ord c) => Ord (a, b, c)
(Ord a, Ord b, Ord c, Ord d) => Ord (a, b, c, d)
(Ord a, Ord b, Ord c, Ord d, Ord e) => Ord (a, b, c, d, e)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f) => Ord (a, b, c, d, e, f)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g) => Ord (a, b, c, d, e, f, g)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h) => Ord (a, b, c, d, e, f, g, h)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i) => Ord (a, b, c, d, e, f, g, h, i)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j) => Ord (a, b, c, d, e, f, g, h, i, j)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k) => Ord (a, b, c, d, e, f, g, h, i, j, k)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l) => Ord (a, b, c, d, e, f, g, h, i, j, k, l)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Ord a, Ord b, Ord c, Ord d, Ord e, Ord f, Ord g, Ord h, Ord i, Ord j, Ord k, Ord l, Ord m, Ord n, Ord o) => Ord (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

class Enum a whereSource

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum , the following should hold:

 enumFrom x = enumFromTo x maxBound
 enumFromThen x y = enumFromThenTo x y bound
 where
 bound | fromEnum y >= fromEnum x = maxBound
 | otherwise = minBound

Methods

succ :: a -> aSource

the successor of a value. For numeric types, succ adds 1.

pred :: a -> aSource

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> aSource

Convert from an Int .

fromEnum :: a -> Int Source

Convert to an Int . It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int .

enumFrom :: a -> [a]Source

Used in Haskell's translation of [n..].

enumFromThen :: a -> a -> [a]Source

Used in Haskell's translation of [n,n'..].

enumFromTo :: a -> a -> [a]Source

Used in Haskell's translation of [n..m].

enumFromThenTo :: a -> a -> a -> [a]Source

Used in Haskell's translation of [n,n'..m].

Instances

class Bounded a whereSource

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded .

Methods

minBound, maxBound :: aSource

Instances

Bounded ()
Bounded a => Bounded (Sum a)
Bounded a => Bounded (Dual a)
(Bounded a, Bounded b) => Bounded (a, b)
(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)
(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Numbers

Numeric types

data Int Source

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using Prelude.minBound and Prelude.maxBound from the Prelude.Bounded class.

Instances

data Integer Source

Arbitrary-precision integers.

Instances

data Float Source

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Instances

data Double Source

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Instances

type Rational = Ratio Integer Source

Arbitrary-precision rational numbers, represented as a ratio of two Integer values. A rational number may be constructed using the % operator.

Numeric type classes

class (Eq a, Show a) => Num a whereSource

Basic numeric class.

Minimal complete definition: all except negate or (-)

Methods

(+), (*), (-) :: a -> a -> aSource

negate :: a -> aSource

Unary negation.

abs :: a -> aSource

Absolute value.

signum :: a -> aSource

Sign of a number. The functions abs and signum should satisfy the law:

 abs x * signum x == x

For real numbers, the signum is either -1 (negative), 0 (zero) or 1 (positive).

fromInteger :: Integer -> aSource

Conversion from an Integer . An integer literal represents the application of the function fromInteger to the appropriate value of type Integer , so such literals have type (Num a) => a.

Instances

class (Num a, Ord a) => Real a whereSource

Methods

toRational :: a -> Rational Source

the rational equivalent of its real argument with full precision

Instances

class (Real a, Enum a) => Integral a whereSource

Integral numbers, supporting integer division.

Minimal complete definition: quotRem and toInteger

Methods

quot :: a -> a -> aSource

integer division truncated toward zero

rem :: a -> a -> aSource

integer remainder, satisfying

 (x `quot` y)*y + (x `rem` y) == x

div :: a -> a -> aSource

integer division truncated toward negative infinity

mod :: a -> a -> aSource

integer modulus, satisfying

 (x `div` y)*y + (x `mod` y) == x

quotRem :: a -> a -> (a, a)Source

simultaneous quot and rem

divMod :: a -> a -> (a, a)Source

simultaneous div and mod

toInteger :: a -> Integer Source

conversion to Integer

Instances

class Num a => Fractional a whereSource

Fractional numbers, supporting real division.

Minimal complete definition: fromRational and (recip or (/ ))

Methods

(/) :: a -> a -> aSource

fractional division

recip :: a -> aSource

reciprocal fraction

fromRational :: Rational -> aSource

Conversion from a Rational (that is Ratio Integer ). A floating literal stands for an application of fromRational to a value of type Rational , so such literals have type (Fractional a) => a.

Instances

class Fractional a => Floating a whereSource

Trigonometric and hyperbolic functions and related functions.

Minimal complete definition: pi , exp , log , sin , cos , sinh , cosh , asin , acos , atan , asinh , acosh and atanh

Methods

pi :: aSource

exp, sqrt, log :: a -> aSource

(**), logBase :: a -> a -> aSource

sin, tan, cos :: a -> aSource

asin, atan, acos :: a -> aSource

sinh, tanh, cosh :: a -> aSource

asinh, atanh, acosh :: a -> aSource

Instances

class (Real a, Fractional a) => RealFrac a whereSource

Extracting components of fractions.

Minimal complete definition: properFraction

Methods

properFraction :: Integral b => a -> (b, a)Source

The function properFraction takes a real fractional number x and returns a pair (n,f) such that x = n+f, and:

  • n is an integral number with the same sign as x; and
  • f is a fraction with the same type and sign as x, and with absolute value less than 1.

The default definitions of the ceiling , floor , truncate and round functions are in terms of properFraction .

truncate :: Integral b => a -> bSource

truncate x returns the integer nearest x between zero and x

round :: Integral b => a -> bSource

round x returns the nearest integer to x; the even integer if x is equidistant between two integers

ceiling :: Integral b => a -> bSource

ceiling x returns the least integer not less than x

floor :: Integral b => a -> bSource

floor x returns the greatest integer not greater than x

Instances

class (RealFrac a, Floating a) => RealFloat a whereSource

Efficient, machine-independent access to the components of a floating-point number.

Minimal complete definition: all except exponent , significand , scaleFloat and atan2

Methods

floatRadix :: a -> Integer Source

a constant function, returning the radix of the representation (often 2)

floatDigits :: a -> Int Source

a constant function, returning the number of digits of floatRadix in the significand

floatRange :: a -> (Int, Int)Source

a constant function, returning the lowest and highest values the exponent may assume

decodeFloat :: a -> (Integer, Int)Source

The function decodeFloat applied to a real floating-point number returns the significand expressed as an Integer and an appropriately scaled exponent (an Int ). If decodeFloat x yields (m,n), then x is equal in value to m*b^^n, where b is the floating-point radix, and furthermore, either m and n are both zero or else b^(d-1) <= m < b^d, where d is the value of floatDigits x. In particular, decodeFloat 0 = (0,0).

encodeFloat :: Integer -> Int -> aSource

encodeFloat performs the inverse of decodeFloat

exponent :: a -> Int Source

the second component of decodeFloat .

significand :: a -> aSource

the first component of decodeFloat , scaled to lie in the open interval (-1,1)

scaleFloat :: Int -> a -> aSource

multiplies a floating-point number by an integer power of the radix

isNaN :: a -> Bool Source

True if the argument is an IEEE "not-a-number" (NaN) value

isInfinite :: a -> Bool Source

True if the argument is an IEEE infinity or negative infinity

isDenormalized :: a -> Bool Source

True if the argument is too small to be represented in normalized format

isNegativeZero :: a -> Bool Source

True if the argument is an IEEE negative zero

isIEEE :: a -> Bool Source

True if the argument is an IEEE floating point number

atan2 :: a -> a -> aSource

a version of arctangent taking two real floating-point arguments. For real floating x and y, atan2 y x computes the angle (from the positive x-axis) of the vector from the origin to the point (x,y). atan2 y x returns a value in the range [-pi, pi]. It follows the Common Lisp semantics for the origin when signed zeroes are supported. atan2 y 1, with y in a type that is RealFloat , should return the same value as atan y. A default definition of atan2 is provided, but implementors can provide a more accurate implementation.

Instances

Numeric functions

subtract :: Num a => a -> a -> aSource

the same as flip (- ).

Because - is treated specially in the Haskell grammar, (- e) is not a section, but an application of prefix negation. However, (subtract exp) is equivalent to the disallowed section.

even, odd :: Integral a => a -> Bool Source

gcd :: Integral a => a -> a -> aSource

gcd x y is the non-negative factor of both x and y of which every common factor of x and y is also a factor; for example gcd 4 2 = 2, gcd (-4) 6 = 2, gcd 0 4 = 4. gcd 0 0 = 0. (That is, the common divisor that is "greatest" in the divisibility preordering.)

Note: Since for signed fixed-width integer types, abs minBound < 0, the result may be negative if one of the arguments is minBound (and necessarily is if the other is 0 or minBound ) for such types.

lcm :: Integral a => a -> a -> aSource

lcm x y is the smallest positive integer that both x and y divide.

(^) :: (Num a, Integral b) => a -> b -> aSource

raise a number to a non-negative integral power

(^^) :: (Fractional a, Integral b) => a -> b -> aSource

raise a number to an integral power

fromIntegral :: (Integral a, Num b) => a -> bSource

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> bSource

general coercion to fractional types

Monads and functors

class Monad m whereSource

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Minimal complete definition: >>= and return .

Instances of Monad should satisfy the following laws:

 return a >>= k == k a
 m >>= return == m
 m >>= (\x -> k x >>= h) == (m >>= k) >>= h

Instances of both Monad and Functor should additionally satisfy the law:

 fmap f xs == xs >>= return . f

The instances of Monad for lists, Data.Maybe.Maybe and System.IO.IO defined in the Prelude satisfy these laws.

Methods

(>>=) :: forall a b. m a -> (a -> m b) -> m bSource

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

(>>) :: forall a b. m a -> m b -> m bSource

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

return :: a -> m aSource

Inject a value into the monadic type.

fail :: String -> m aSource

Fail with a message. This operation is not part of the mathematical definition of a monad, but is invoked on pattern-match failure in a do expression.

Instances

class Functor f whereSource

The Functor class is used for types that can be mapped over. Instances of Functor should satisfy the following laws:

 fmap id == id
 fmap (f . g) == fmap f . fmap g

The instances of Functor for lists, Data.Maybe.Maybe and System.IO.IO satisfy these laws.

Methods

fmap :: (a -> b) -> f a -> f bSource

Instances

mapM :: Monad m => (a -> m b) -> [a] -> m [b]Source

mapM f is equivalent to sequence . map f.

mapM_ :: Monad m => (a -> m b) -> [a] -> m () Source

mapM_ f is equivalent to sequence_ . map f.

sequence :: Monad m => [m a] -> m [a]Source

Evaluate each action in the sequence from left to right, and collect the results.

sequence_ :: Monad m => [m a] -> m () Source

Evaluate each action in the sequence from left to right, and ignore the results.

(=<<) :: Monad m => (a -> m b) -> m a -> m bSource

Same as >>= , but with the arguments interchanged.

Miscellaneous functions

id :: a -> aSource

Identity function.

const :: a -> b -> aSource

Constant function.

(.) :: (b -> c) -> (a -> b) -> a -> cSource

Function composition.

flip :: (a -> b -> c) -> b -> a -> cSource

flip f takes its (first) two arguments in the reverse order of f.

($) :: (a -> b) -> a -> bSource

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

 f $ g $ h x = f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or Data.List.zipWith ($ ) fs xs.

until :: (a -> Bool) -> (a -> a) -> a -> aSource

until p f yields the result of applying f until p holds.

asTypeOf :: a -> a -> aSource

asTypeOf is a type-restricted version of const . It is usually used as an infix operator, and its typing forces its first argument (which is usually overloaded) to have the same type as the second.

error :: [Char] -> aSource

error stops execution and displays an error message.

undefined :: aSource

A special case of error . It is expected that compilers will recognize this and insert error messages which are more appropriate to the context in which undefined appears.

seq :: a -> b -> bSource

Evaluates its first argument to head normal form, and then returns its second argument as the result.

($!) :: (a -> b) -> a -> bSource

Strict (call-by-value) application, defined in terms of seq .

List operations

map :: (a -> b) -> [a] -> [b]Source

map f xs is the list obtained by applying f to each element of xs, i.e.,

 map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
 map f [x1, x2, ...] == [f x1, f x2, ...]

(++) :: [a] -> [a] -> [a]Source

Append two lists, i.e.,

 [x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
 [x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

filter :: (a -> Bool) -> [a] -> [a]Source

filter , applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

 filter p xs = [ x | x <- xs, p x]

head :: [a] -> aSource

Extract the first element of a list, which must be non-empty.

last :: [a] -> aSource

Extract the last element of a list, which must be finite and non-empty.

tail :: [a] -> [a]Source

Extract the elements after the head of a list, which must be non-empty.

init :: [a] -> [a]Source

Return all the elements of a list except the last one. The list must be non-empty.

null :: [a] -> Bool Source

Test whether a list is empty.

length :: [a] -> Int Source

O(n). length returns the length of a finite list as an Int . It is an instance of the more general Data.List.genericLength, the result type of which may be any kind of number.

(!!) :: [a] -> Int -> aSource

List index (subscript) operator, starting from 0. It is an instance of the more general Data.List.genericIndex, which takes an index of any integral type.

reverse :: [a] -> [a]Source

reverse xs returns the elements of xs in reverse order. xs must be finite.

Reducing lists (folds)

foldl :: (a -> b -> a) -> a -> [b] -> aSource

foldl , applied to a binary operator, a starting value (typically the left-identity of the operator), and a list, reduces the list using the binary operator, from left to right:

 foldl f z [x1, x2, ..., xn] == (...((z `f` x1) `f` x2) `f`...) `f` xn

The list must be finite.

foldl1 :: (a -> a -> a) -> [a] -> aSource

foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty lists.

foldr :: (a -> b -> b) -> b -> [a] -> bSource

foldr , applied to a binary operator, a starting value (typically the right-identity of the operator), and a list, reduces the list using the binary operator, from right to left:

 foldr f z [x1, x2, ..., xn] == x1 `f` (x2 `f` ... (xn `f` z)...)

foldr1 :: (a -> a -> a) -> [a] -> aSource

foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-empty lists.

Special folds

and :: [Bool] -> Bool Source

and returns the conjunction of a Boolean list. For the result to be True , the list must be finite; False , however, results from a False value at a finite index of a finite or infinite list.

or :: [Bool] -> Bool Source

or returns the disjunction of a Boolean list. For the result to be False , the list must be finite; True , however, results from a True value at a finite index of a finite or infinite list.

any :: (a -> Bool) -> [a] -> Bool Source

Applied to a predicate and a list, any determines if any element of the list satisfies the predicate. For the result to be False , the list must be finite; True , however, results from a True value for the predicate applied to an element at a finite index of a finite or infinite list.

all :: (a -> Bool) -> [a] -> Bool Source

Applied to a predicate and a list, all determines if all elements of the list satisfy the predicate. For the result to be True , the list must be finite; False , however, results from a False value for the predicate applied to an element at a finite index of a finite or infinite list.

sum :: Num a => [a] -> aSource

The sum function computes the sum of a finite list of numbers.

product :: Num a => [a] -> aSource

The product function computes the product of a finite list of numbers.

concat :: [[a]] -> [a]Source

Concatenate a list of lists.

concatMap :: (a -> [b]) -> [a] -> [b]Source

Map a function over a list and concatenate the results.

maximum :: Ord a => [a] -> aSource

maximum returns the maximum value from a list, which must be non-empty, finite, and of an ordered type. It is a special case of maximumBy , which allows the programmer to supply their own comparison function.

minimum :: Ord a => [a] -> aSource

minimum returns the minimum value from a list, which must be non-empty, finite, and of an ordered type. It is a special case of minimumBy , which allows the programmer to supply their own comparison function.

Building lists

Scans

scanl :: (a -> b -> a) -> a -> [b] -> [a]Source

scanl is similar to foldl , but returns a list of successive reduced values from the left:

 scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...]

Note that

 last (scanl f z xs) == foldl f z xs.

scanl1 :: (a -> a -> a) -> [a] -> [a]Source

scanl1 is a variant of scanl that has no starting value argument:

 scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...]

scanr :: (a -> b -> b) -> b -> [a] -> [b]Source

scanr is the right-to-left dual of scanl . Note that

 head (scanr f z xs) == foldr f z xs.

scanr1 :: (a -> a -> a) -> [a] -> [a]Source

scanr1 is a variant of scanr that has no starting value argument.

Infinite lists

iterate :: (a -> a) -> a -> [a]Source

iterate f x returns an infinite list of repeated applications of f to x:

 iterate f x == [x, f x, f (f x), ...]

repeat :: a -> [a]Source

repeat x is an infinite list, with x the value of every element.

replicate :: Int -> a -> [a]Source

replicate n x is a list of length n with x the value of every element. It is an instance of the more general Data.List.genericReplicate, in which n may be of any integral type.

cycle :: [a] -> [a]Source

cycle ties a finite list into a circular one, or equivalently, the infinite repetition of the original list. It is the identity on infinite lists.

Sublists

take :: Int -> [a] -> [a]Source

take n, applied to a list xs, returns the prefix of xs of length n, or xs itself if n > length xs:

 take 5 "Hello World!" == "Hello"
 take 3 [1,2,3,4,5] == [1,2,3]
 take 3 [1,2] == [1,2]
 take 3 [] == []
 take (-1) [1,2] == []
 take 0 [1,2] == []

It is an instance of the more general Data.List.genericTake, in which n may be of any integral type.

drop :: Int -> [a] -> [a]Source

drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs:

 drop 6 "Hello World!" == "World!"
 drop 3 [1,2,3,4,5] == [4,5]
 drop 3 [1,2] == []
 drop 3 [] == []
 drop (-1) [1,2] == [1,2]
 drop 0 [1,2] == [1,2]

It is an instance of the more general Data.List.genericDrop, in which n may be of any integral type.

splitAt :: Int -> [a] -> ([a], [a])Source

splitAt n xs returns a tuple where first element is xs prefix of length n and second element is the remainder of the list:

 splitAt 6 "Hello World!" == ("Hello ","World!")
 splitAt 3 [1,2,3,4,5] == ([1,2,3],[4,5])
 splitAt 1 [1,2,3] == ([1],[2,3])
 splitAt 3 [1,2,3] == ([1,2,3],[])
 splitAt 4 [1,2,3] == ([1,2,3],[])
 splitAt 0 [1,2,3] == ([],[1,2,3])
 splitAt (-1) [1,2,3] == ([],[1,2,3])

It is equivalent to (take n xs, drop n xs) when n is not _|_ (splitAt _|_ xs = _|_). splitAt is an instance of the more general Data.List.genericSplitAt, in which n may be of any integral type.

takeWhile :: (a -> Bool) -> [a] -> [a]Source

takeWhile , applied to a predicate p and a list xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p:

 takeWhile (< 3) [1,2,3,4,1,2,3,4] == [1,2]
 takeWhile (< 9) [1,2,3] == [1,2,3]
 takeWhile (< 0) [1,2,3] == []

dropWhile :: (a -> Bool) -> [a] -> [a]Source

dropWhile p xs returns the suffix remaining after takeWhile p xs:

 dropWhile (< 3) [1,2,3,4,5,1,2,3] == [3,4,5,1,2,3]
 dropWhile (< 9) [1,2,3] == []
 dropWhile (< 0) [1,2,3] == [1,2,3]

span :: (a -> Bool) -> [a] -> ([a], [a])Source

span , applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that satisfy p and second element is the remainder of the list:

 span (< 3) [1,2,3,4,1,2,3,4] == ([1,2],[3,4,1,2,3,4])
 span (< 9) [1,2,3] == ([1,2,3],[])
 span (< 0) [1,2,3] == ([],[1,2,3])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

break :: (a -> Bool) -> [a] -> ([a], [a])Source

break , applied to a predicate p and a list xs, returns a tuple where first element is longest prefix (possibly empty) of xs of elements that do not satisfy p and second element is the remainder of the list:

 break (> 3) [1,2,3,4,1,2,3,4] == ([1,2,3],[4,1,2,3,4])
 break (< 9) [1,2,3] == ([],[1,2,3])
 break (> 9) [1,2,3] == ([1,2,3],[])

break p is equivalent to span (not . p).

Searching lists

elem :: Eq a => a -> [a] -> Bool Source

elem is the list membership predicate, usually written in infix form, e.g., x `elem` xs. For the result to be False , the list must be finite; True , however, results from an element equal to x found at a finite index of a finite or infinite list.

notElem :: Eq a => a -> [a] -> Bool Source

notElem is the negation of elem .

lookup :: Eq a => a -> [(a, b)] -> Maybe bSource

lookup key assocs looks up a key in an association list.

Zipping and unzipping lists

zip :: [a] -> [b] -> [(a, b)]Source

zip takes two lists and returns a list of corresponding pairs. If one input list is short, excess elements of the longer list are discarded.

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]Source

zip3 takes three lists and returns a list of triples, analogous to zip .

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]Source

zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two lists to produce the list of corresponding sums.

zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]Source

The zipWith3 function takes a function which combines three elements, as well as three lists and returns a list of their point-wise combination, analogous to zipWith .

unzip :: [(a, b)] -> ([a], [b])Source

unzip transforms a list of pairs into a list of first components and a list of second components.

unzip3 :: [(a, b, c)] -> ([a], [b], [c])Source

The unzip3 function takes a list of triples and returns three lists, analogous to unzip .

Functions on strings

lines :: String -> [String]Source

lines breaks a string up into a list of strings at newline characters. The resulting strings do not contain newlines.

words :: String -> [String]Source

words breaks a string up into a list of words, which were delimited by white space.

unlines :: [String] -> String Source

unlines is an inverse operation to lines . It joins lines, after appending a terminating newline to each.

unwords :: [String] -> String Source

unwords is an inverse operation to words . It joins words with separating spaces.

Converting to and from String

Converting to String

type ShowS = String -> String Source

The shows functions return a function that prepends the output String to an existing String . This allows constant-time concatenation of results using function composition.

class Show a whereSource

Conversion of values to readable String s.

Minimal complete definition: showsPrec or show .

Derived instances of Show have the following properties, which are compatible with derived instances of Text.Read.Read:

  • The result of show is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used.
  • If the constructor is defined to be an infix operator, then showsPrec will produce infix applications of the constructor.
  • the representation will be enclosed in parentheses if the precedence of the top-level constructor in x is less than d (associativity is ignored). Thus, if d is 0 then the result is never surrounded in parentheses; if d is 11 it is always surrounded in parentheses, unless it is an atomic expression.
  • If the constructor is defined using record syntax, then show will produce the record-syntax form, with the fields given in the same order as the original declaration.

For example, given the declarations

 infixr 5 :^:
 data Tree a = Leaf a | Tree a :^: Tree a

the derived instance of Show is equivalent to

 instance (Show a) => Show (Tree a) where
 showsPrec d (Leaf m) = showParen (d > app_prec) $
 showString "Leaf " . showsPrec (app_prec+1) m
 where app_prec = 10
 showsPrec d (u :^: v) = showParen (d > up_prec) $
 showsPrec (up_prec+1) u . 
 showString " :^: " .
 showsPrec (up_prec+1) v
 where up_prec = 5

Note that right-associativity of :^: is ignored. For example,

  • show (Leaf 1 :^: Leaf 2 :^: Leaf 3) produces the string "Leaf 1 :^: (Leaf 2 :^: Leaf 3)".

Methods

showsPrec Source

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> a

the value to be converted to a String

-> ShowS

Convert a value to a readable String .

showsPrec should satisfy the law

 showsPrec d x r ++ s == showsPrec d x (r ++ s)

Derived instances of Text.Read.Read and Show satisfy the following:

  • (x,"") is an element of (Text.Read.readsPrec d (showsPrec d x "")).

That is, Text.Read.readsPrec parses the string produced by showsPrec , and delivers the value that showsPrec started with.

show :: a -> String Source

A specialised variant of showsPrec , using precedence context zero, and returning an ordinary String .

showList :: [a] -> ShowS Source

The method showList is provided to allow the programmer to give a specialised way of showing lists of values. For example, this is used by the predefined Show instance of the Char type, where values of type String should be shown in double quotes, rather than between square brackets.

Instances

Show ()
Show HashData
Show HandleType
Show Control
Show ControlMessage
Show Timeout
Show EventType
Show Event
Show EPollFd
Show Unique
Show State
Show FD
Show BlockedIndefinitely
Show BlockedOnDeadMVar
Show Timeout
Show Event
Show PollFd
Show a => Show [a]
Integral a => Show (Ratio a)
Show (Ptr a)
Show (FunPtr a)
Show a => Show (Maybe a)
Show a => Show (Last a)
Show a => Show (First a)
Show a => Show (Product a)
Show a => Show (Sum a)
Show a => Show (Dual a)
Show a => Show (IntMap a)
Show a => Show (Sequ a)
Show a => Show (LTree a)
Show a => Show (PSQ a)
Show a => Show (Elem a)
Show a => Show (Complex a)
Show (a -> b)
(Show a, Show b) => Show (Either a b)
(Show a, Show b) => Show (a, b)
Show (ST s a)
(Ix a, Show a, Show b) => Show (Array a b)
(Show a, Show b, Show c) => Show (a, b, c)
(Show a, Show b, Show c, Show d) => Show (a, b, c, d)
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e)
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

shows :: Show a => a -> ShowS Source

equivalent to showsPrec with a precedence of 0.

showChar :: Char -> ShowS Source

utility function converting a Char to a show function that simply prepends the character unchanged.

showString :: String -> ShowS Source

utility function converting a String to a show function that simply prepends the string unchanged.

showParen :: Bool -> ShowS -> ShowS Source

utility function that surrounds the inner show function with parentheses when the Bool parameter is True .

Converting from String

type ReadS a = String -> [(a, String)]Source

A parser for a type a, represented as a function that takes a String and returns a list of possible parses as (a,String ) pairs.

Note that this kind of backtracking parser is very inefficient; reading a large structure may be quite slow (cf ReadP ).

class Read a whereSource

Parsing of String s, producing values.

Minimal complete definition: readsPrec (or, for GHC only, readPrec )

Derived instances of Read make the following assumptions, which derived instances of Text.Show.Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

 infixr 5 :^:
 data Tree a = Leaf a | Tree a :^: Tree a

the derived instance of Read in Haskell 98 is equivalent to

 instance (Read a) => Read (Tree a) where
 readsPrec d r = readParen (d > app_prec)
 (\r -> [(Leaf m,t) |
 ("Leaf",s) <- lex r,
 (m,t) <- readsPrec (app_prec+1) s]) r
 ++ readParen (d > up_prec)
 (\r -> [(u:^:v,w) |
 (u,s) <- readsPrec (up_prec+1) r,
 (":^:",t) <- lex s,
 (v,w) <- readsPrec (up_prec+1) t]) r
 where app_prec = 10
 up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

 instance (Read a) => Read (Tree a) where
 readPrec = parens $ (prec app_prec $ do
 Ident "Leaf" <- lexP
 m <- step readPrec
 return (Leaf m))
 +++ (prec up_prec $ do
 u <- step readPrec
 Symbol ":^:" <- lexP
 v <- step readPrec
 return (u :^: v))
 where app_prec = 10
 up_prec = 5
 readListPrec = readListPrecDefault

Methods

readsPrec Source

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Text.Show.Show satisfy the following:

  • (x,"") is an element of (readsPrec d (Text.Show.showsPrec d x "")).

That is, readsPrec parses the string produced by Text.Show.showsPrec, and delivers the value that Text.Show.showsPrec started with.

readList :: ReadS [a]Source

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances

Read ()
Read a => Read [a]
(Integral a, Read a) => Read (Ratio a)
Read a => Read (Maybe a)
Read a => Read (Last a)
Read a => Read (First a)
Read a => Read (Product a)
Read a => Read (Sum a)
Read a => Read (Dual a)
Read a => Read (Complex a)
(Read a, Read b) => Read (Either a b)
(Read a, Read b) => Read (a, b)
(Ix a, Read a, Read b) => Read (Array a b)
(Read a, Read b, Read c) => Read (a, b, c)
(Read a, Read b, Read c, Read d) => Read (a, b, c, d)
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e)
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n)
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

reads :: Read a => ReadS aSource

equivalent to readsPrec with a precedence of 0.

readParen :: Bool -> ReadS a -> ReadS aSource

readParen True p parses what p parses, but surrounded with parentheses.

readParen False p parses what p parses, but optionally surrounded with parentheses.

read :: Read a => String -> aSource

The read function reads input from a string, which must be completely consumed by the input process.

lex :: ReadS String Source

The lex function reads a single lexeme from the input, discarding initial white space, and returning the characters that constitute the lexeme. If the input string contains only white space, lex returns a single successful `lexeme' consisting of the empty string. (Thus lex "" = [("","")].) If there is no legal lexeme at the beginning of the input string, lex fails (i.e. returns []).

This lexer is not completely faithful to the Haskell lexical syntax in the following respects:

  • Qualified names are not handled properly
  • Octal and hexadecimal numerics are not recognized as a single token
  • Comments are not treated properly

Basic Input and output

data IO a Source

A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a.

There is really only one way to "perform" an I/O action: bind it to Main.main in your program. When your program is run, the I/O will be performed. It isn't possible to perform I/O from an arbitrary function, unless that function is itself in the IO monad and called at some point, directly or indirectly, from Main.main.

IO is a monad, so IO actions can be combined using either the do-notation or the >> and >>= operations from the Monad class.

Instances

Simple I/O operations

Output functions

putChar :: Char -> IO () Source

Write a character to the standard output device (same as hPutChar stdout ).

putStr :: String -> IO () Source

Write a string to the standard output device (same as hPutStr stdout ).

putStrLn :: String -> IO () Source

The same as putStr , but adds a newline character.

print :: Show a => a -> IO () Source

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show ; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

 main = print ([(n, 2^n) | n <- [0..19]])

Input functions

getChar :: IO Char Source

Read a character from the standard input device (same as hGetChar stdin ).

getLine :: IO String Source

Read a line from the standard input device (same as hGetLine stdin ).

getContents :: IO String Source

The getContents operation returns all user input as a single string, which is read lazily as it is needed (same as hGetContents stdin ).

interact :: (String -> String) -> IO () Source

The interact function takes a function of type String->String as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device.

Files

type FilePath = String Source

File and directory names are values of type String , whose precise meaning is operating system dependent. Files can be opened, yielding a handle which can then be used to operate on the contents of that file.

readFile :: FilePath -> IO String Source

The readFile function reads a file and returns the contents of the file as a string. The file is read lazily, on demand, as with getContents .

writeFile :: FilePath -> String -> IO () Source

The computation writeFile file str function writes the string str, to the file file.

appendFile :: FilePath -> String -> IO () Source

The computation appendFile file str function appends the string str, to the file file.

Note that writeFile and appendFile write a literal string to a file. To write a value of any printable type, as with print , use the show function to convert the value to a string first.

 main = appendFile "squares" (show [(x,x*x) | x <- [0,0.1..2]])

readIO :: Read a => String -> IO aSource

The readIO function is similar to read except that it signals parse failure to the IO monad instead of terminating the program.

readLn :: Read a => IO aSource

The readLn function combines getLine and readIO .

Exception handling in the I/O monad

type IOError = IOException Source

The Haskell 98 type for exceptions in the IO monad. Any I/O operation may raise an IOError instead of returning a result. For a more general type of exception, including also those that arise in pure code, see Control.Exception.Exception.

In Haskell 98, this is an opaque type.

ioError :: IOError -> IO aSource

Raise an IOError in the IO monad.

userError :: String -> IOError Source

Construct an IOError value with a string describing the error. The fail method of the IO instance of the Monad class raises a userError , thus:

 instance Monad IO where 
 ...
 fail s = ioError (userError s)

catch :: IO a -> (IOError -> IO a) -> IO aSource

The catch function is deprecated. Please use the new exceptions variant, Control.Exception.catch from Control.Exception, instead.

AltStyle によって変換されたページ (->オリジナル) /