{-# LANGUAGE EmptyCase #-}{-# LANGUAGE GeneralizedNewtypeDeriving #-}{-# LANGUAGE StandaloneDeriving #-}{-# LANGUAGE Trustworthy #-}{-# LANGUAGE TypeOperators #-}------------------------------------------------------------------------------- |-- Module : Data.Functor.Contravariant-- Copyright : (C) 2007-2015 Edward Kmett-- License : BSD-style (see the file LICENSE)---- Maintainer : libraries@haskell.org-- Stability : provisional-- Portability : portable---- 'Contravariant' functors, sometimes referred to colloquially as @Cofunctor@,-- even though the dual of a 'Functor' is just a 'Functor'. As with 'Functor'-- the definition of 'Contravariant' for a given ADT is unambiguous.---- @since 4.12.0.0----------------------------------------------------------------------------moduleData.Functor.Contravariant(-- * Contravariant FunctorsContravariant (..),phantom -- * Operators,(>$<) ,(>$$<) ,($<) -- * Predicates,Predicate (..)-- * Comparisons,Comparison (..),defaultComparison -- * Equivalence Relations,Equivalence (..),defaultEquivalence ,comparisonEquivalence -- * Dual arrows,Op (..))whereimportControl.Applicative importControl.Category importData.Function (on )importData.Functor.Product importData.Functor.Sum importData.Functor.Compose importData.Monoid (Alt (..))importData.Proxy importGHC.Generics importPrelude hiding((.) ,id )-- | The class of contravariant functors.---- Whereas in Haskell, one can think of a 'Functor' as containing or producing-- values, a contravariant functor is a functor that can be thought of as-- /consuming/ values.---- As an example, consider the type of predicate functions @a -> Bool@. One-- such predicate might be @negative x = x < 0@, which-- classifies integers as to whether they are negative. However, given this-- predicate, we can re-use it in other situations, providing we have a way to-- map values /to/ integers. For instance, we can use the @negative@ predicate-- on a person's bank balance to work out if they are currently overdrawn:---- @-- newtype Predicate a = Predicate { getPredicate :: a -> Bool }---- instance Contravariant Predicate where-- contramap f (Predicate p) = Predicate (p . f)-- | `- First, map the input...-- `----- then apply the predicate.---- overdrawn :: Predicate Person-- overdrawn = contramap personBankBalance negative-- @---- Any instance should be subject to the following laws:---- [Identity] @'contramap' 'id' = 'id'@-- [Composition] @'contramap' (g . f) = 'contramap' f . 'contramap' g@---- Note, that the second law follows from the free theorem of the type of-- 'contramap' and the first law, so you need only check that the former-- condition holds.classContravariant f wherecontramap ::(a ->b )->f b ->f a -- | Replace all locations in the output with the same value.-- The default definition is @'contramap' . 'const'@, but this may be-- overridden with a more efficient version.(>$) ::b ->f b ->f a (>$) =(a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap ((a -> b) -> f b -> f a) -> (b -> a -> b) -> b -> f b -> f a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a -> b
forall a b. a -> b -> a
const -- | If @f@ is both 'Functor' and 'Contravariant' then by the time you factor-- in the laws of each of those classes, it can't actually use its argument in-- any meaningful capacity.---- This method is surprisingly useful. Where both instances exist and are-- lawful we have the following laws:---- @-- 'fmap' f ≡ 'phantom'-- 'contramap' f ≡ 'phantom'-- @phantom ::(Functor f ,Contravariant f )=>f a ->f b phantom :: f a -> f b
phantom f a
x =()() -> f a -> f ()
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ f a
x f () -> () -> f b
forall (f :: * -> *) b a. Contravariant f => f b -> b -> f a
$< ()infixl4>$ ,$< ,>$< ,>$$< -- | This is '>$' with its arguments flipped.($<) ::Contravariant f =>f b ->b ->f a $< :: f b -> b -> f a
($<) =(b -> f b -> f a) -> f b -> b -> f a
forall a b c. (a -> b -> c) -> b -> a -> c
flip b -> f b -> f a
forall (f :: * -> *) b a. Contravariant f => b -> f b -> f a
(>$) -- | This is an infix alias for 'contramap'.(>$<) ::Contravariant f =>(a ->b )->f b ->f a >$< :: (a -> b) -> f b -> f a
(>$<) =(a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap -- | This is an infix version of 'contramap' with the arguments flipped.(>$$<) ::Contravariant f =>f b ->(a ->b )->f a >$$< :: f b -> (a -> b) -> f a
(>$$<) =((a -> b) -> f b -> f a) -> f b -> (a -> b) -> f a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap derivinginstanceContravariant f =>Contravariant (Alt f )derivinginstanceContravariant f =>Contravariant (Rec1 f )derivinginstanceContravariant f =>Contravariant (M1 i c f )instanceContravariant V1 wherecontramap :: (a -> b) -> V1 b -> V1 a
contramap a -> b
_V1 b
x =caseV1 b
x ofinstanceContravariant U1 wherecontramap :: (a -> b) -> U1 b -> U1 a
contramap a -> b
_U1 b
_=U1 a
forall k (p :: k). U1 p
U1 instanceContravariant (K1 i c )wherecontramap :: (a -> b) -> K1 i c b -> K1 i c a
contramap a -> b
_(K1 c
c )=c -> K1 i c a
forall k i c (p :: k). c -> K1 i c p
K1 c
c instance(Contravariant f ,Contravariant g )=>Contravariant (f :*: g )wherecontramap :: (a -> b) -> (:*:) f g b -> (:*:) f g a
contramap a -> b
f (f b
xs :*: g b
ys )=(a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f f b
xs f a -> g a -> (:*:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: (a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f g b
ys instance(Functor f ,Contravariant g )=>Contravariant (f :.: g )wherecontramap :: (a -> b) -> (:.:) f g b -> (:.:) f g a
contramap a -> b
f (Comp1 f (g b)
fg )=f (g a) -> (:.:) f g a
forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (p :: k1).
f (g p) -> (:.:) f g p
Comp1 ((g b -> g a) -> f (g b) -> f (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f )f (g b)
fg )instance(Contravariant f ,Contravariant g )=>Contravariant (f :+: g )wherecontramap :: (a -> b) -> (:+:) f g b -> (:+:) f g a
contramap a -> b
f (L1 f b
xs )=f a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 ((a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f f b
xs )contramap a -> b
f (R1 g b
ys )=g a -> (:+:) f g a
forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 ((a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f g b
ys )instance(Contravariant f ,Contravariant g )=>Contravariant (Sum f g )wherecontramap :: (a -> b) -> Sum f g b -> Sum f g a
contramap a -> b
f (InL f b
xs )=f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL ((a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f f b
xs )contramap a -> b
f (InR g b
ys )=g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR ((a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f g b
ys )instance(Contravariant f ,Contravariant g )=>Contravariant (Product f g )wherecontramap :: (a -> b) -> Product f g b -> Product f g a
contramap a -> b
f (Pair f b
a g b
b )=f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair ((a -> b) -> f b -> f a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f f b
a )((a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f g b
b )instanceContravariant (Const a )wherecontramap :: (a -> b) -> Const a b -> Const a a
contramap a -> b
_(Const a
a )=a -> Const a a
forall k a (b :: k). a -> Const a b
Const a
a instance(Functor f ,Contravariant g )=>Contravariant (Compose f g )wherecontramap :: (a -> b) -> Compose f g b -> Compose f g a
contramap a -> b
f (Compose f (g b)
fga )=f (g a) -> Compose f g a
forall k k (f :: k -> *) (g :: k -> k) (a :: k).
f (g a) -> Compose f g a
Compose ((g b -> g a) -> f (g b) -> f (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> g b -> g a
forall (f :: * -> *) a b. Contravariant f => (a -> b) -> f b -> f a
contramap a -> b
f )f (g b)
fga )instanceContravariant Proxy wherecontramap :: (a -> b) -> Proxy b -> Proxy a
contramap a -> b
_Proxy b
_=Proxy a
forall k (t :: k). Proxy t
Proxy newtypePredicate a =Predicate {Predicate a -> a -> Bool
getPredicate ::a ->Bool}-- | A 'Predicate' is a 'Contravariant' 'Functor', because 'contramap' can-- apply its function argument to the input of the predicate.instanceContravariant Predicate wherecontramap :: (a -> b) -> Predicate b -> Predicate a
contramap a -> b
f Predicate b
g =(a -> Bool) -> Predicate a
forall a. (a -> Bool) -> Predicate a
Predicate ((a -> Bool) -> Predicate a) -> (a -> Bool) -> Predicate a
forall a b. (a -> b) -> a -> b
$ Predicate b -> b -> Bool
forall a. Predicate a -> a -> Bool
getPredicate Predicate b
g (b -> Bool) -> (a -> b) -> a -> Bool
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
f instanceSemigroup (Predicate a )wherePredicate a -> Bool
p <> :: Predicate a -> Predicate a -> Predicate a
<> Predicate a -> Bool
q =(a -> Bool) -> Predicate a
forall a. (a -> Bool) -> Predicate a
Predicate ((a -> Bool) -> Predicate a) -> (a -> Bool) -> Predicate a
forall a b. (a -> b) -> a -> b
$ \a
a ->a -> Bool
p a
a Bool -> Bool -> Bool
&&a -> Bool
q a
a instanceMonoid (Predicate a )wheremempty :: Predicate a
mempty =(a -> Bool) -> Predicate a
forall a. (a -> Bool) -> Predicate a
Predicate ((a -> Bool) -> Predicate a) -> (a -> Bool) -> Predicate a
forall a b. (a -> b) -> a -> b
$ Bool -> a -> Bool
forall a b. a -> b -> a
const Bool
True-- | Defines a total ordering on a type as per 'compare'.---- This condition is not checked by the types. You must ensure that the-- supplied values are valid total orderings yourself.newtypeComparison a =Comparison {Comparison a -> a -> a -> Ordering
getComparison ::a ->a ->Ordering}derivinginstanceSemigroup (Comparison a )derivinginstanceMonoid (Comparison a )-- | A 'Comparison' is a 'Contravariant' 'Functor', because 'contramap' can-- apply its function argument to each input of the comparison function.instanceContravariant Comparison wherecontramap :: (a -> b) -> Comparison b -> Comparison a
contramap a -> b
f Comparison b
g =(a -> a -> Ordering) -> Comparison a
forall a. (a -> a -> Ordering) -> Comparison a
Comparison ((a -> a -> Ordering) -> Comparison a)
-> (a -> a -> Ordering) -> Comparison a
forall a b. (a -> b) -> a -> b
$ (b -> b -> Ordering) -> (a -> b) -> a -> a -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
on (Comparison b -> b -> b -> Ordering
forall a. Comparison a -> a -> a -> Ordering
getComparison Comparison b
g )a -> b
f -- | Compare using 'compare'.defaultComparison ::Orda =>Comparison a defaultComparison :: Comparison a
defaultComparison =(a -> a -> Ordering) -> Comparison a
forall a. (a -> a -> Ordering) -> Comparison a
Comparison a -> a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare-- | This data type represents an equivalence relation.---- Equivalence relations are expected to satisfy three laws:---- [Reflexivity]: @'getEquivalence' f a a = True@-- [Symmetry]: @'getEquivalence' f a b = 'getEquivalence' f b a@-- [Transitivity]:-- If @'getEquivalence' f a b@ and @'getEquivalence' f b c@ are both 'True'-- then so is @'getEquivalence' f a c@.---- The types alone do not enforce these laws, so you'll have to check them-- yourself.newtypeEquivalence a =Equivalence {Equivalence a -> a -> a -> Bool
getEquivalence ::a ->a ->Bool}-- | Equivalence relations are 'Contravariant', because you can-- apply the contramapped function to each input to the equivalence-- relation.instanceContravariant Equivalence wherecontramap :: (a -> b) -> Equivalence b -> Equivalence a
contramap a -> b
f Equivalence b
g =(a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence ((a -> a -> Bool) -> Equivalence a)
-> (a -> a -> Bool) -> Equivalence a
forall a b. (a -> b) -> a -> b
$ (b -> b -> Bool) -> (a -> b) -> a -> a -> Bool
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
on (Equivalence b -> b -> b -> Bool
forall a. Equivalence a -> a -> a -> Bool
getEquivalence Equivalence b
g )a -> b
f instanceSemigroup (Equivalence a )whereEquivalence a -> a -> Bool
p <> :: Equivalence a -> Equivalence a -> Equivalence a
<> Equivalence a -> a -> Bool
q =(a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence ((a -> a -> Bool) -> Equivalence a)
-> (a -> a -> Bool) -> Equivalence a
forall a b. (a -> b) -> a -> b
$ \a
a a
b ->a -> a -> Bool
p a
a a
b Bool -> Bool -> Bool
&&a -> a -> Bool
q a
a a
b instanceMonoid (Equivalence a )wheremempty :: Equivalence a
mempty =(a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence (\a
_a
_->Bool
True)-- | Check for equivalence with '=='.---- Note: The instances for 'Double' and 'Float' violate reflexivity for @NaN@.defaultEquivalence ::Eqa =>Equivalence a defaultEquivalence :: Equivalence a
defaultEquivalence =(a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==)comparisonEquivalence ::Comparison a ->Equivalence a comparisonEquivalence :: Comparison a -> Equivalence a
comparisonEquivalence (Comparison a -> a -> Ordering
p )=(a -> a -> Bool) -> Equivalence a
forall a. (a -> a -> Bool) -> Equivalence a
Equivalence ((a -> a -> Bool) -> Equivalence a)
-> (a -> a -> Bool) -> Equivalence a
forall a b. (a -> b) -> a -> b
$ \a
a a
b ->a -> a -> Ordering
p a
a a
b Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
==Ordering
EQ-- | Dual function arrows.newtypeOp a b =Op {Op a b -> b -> a
getOp ::b ->a }derivinginstanceSemigroup a =>Semigroup (Op a b )derivinginstanceMonoid a =>Monoid (Op a b )instanceCategory Op whereid :: Op a a
id =(a -> a) -> Op a a
forall a b. (b -> a) -> Op a b
Op a -> a
forall k (cat :: k -> k -> *) (a :: k). Category cat => cat a a
id Op c -> b
f . :: Op b c -> Op a b -> Op a c
. Op b -> a
g =(c -> a) -> Op a c
forall a b. (b -> a) -> Op a b
Op (b -> a
g (b -> a) -> (c -> b) -> c -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. c -> b
f )instanceContravariant (Op a )wherecontramap :: (a -> b) -> Op a b -> Op a a
contramap a -> b
f Op a b
g =(a -> a) -> Op a a
forall a b. (b -> a) -> Op a b
Op (Op a b -> b -> a
forall a b. Op a b -> b -> a
getOp Op a b
g (b -> a) -> (a -> b) -> a -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b
f )instanceNum a =>Num (Op a b )whereOp b -> a
f + :: Op a b -> Op a b -> Op a b
+ Op b -> a
g =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->b -> a
f b
a a -> a -> a
forall a. Num a => a -> a -> a
+ b -> a
g b
a Op b -> a
f * :: Op a b -> Op a b -> Op a b
* Op b -> a
g =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->b -> a
f b
a a -> a -> a
forall a. Num a => a -> a -> a
* b -> a
g b
a Op b -> a
f - :: Op a b -> Op a b -> Op a b
- Op b -> a
g =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->b -> a
f b
a a -> a -> a
forall a. Num a => a -> a -> a
- b -> a
g b
a abs :: Op a b -> Op a b
abs (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Num a => a -> a
abs (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f signum :: Op a b -> Op a b
signum (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Num a => a -> a
signum (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f fromInteger :: Integer -> Op a b
fromInteger =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (Integer -> b -> a) -> Integer -> Op a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b -> a
forall a b. a -> b -> a
const (a -> b -> a) -> (Integer -> a) -> Integer -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Integer -> a
forall a. Num a => Integer -> a
fromInteger instanceFractional a =>Fractional (Op a b )whereOp b -> a
f / :: Op a b -> Op a b -> Op a b
/ Op b -> a
g =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->b -> a
f b
a a -> a -> a
forall a. Fractional a => a -> a -> a
/ b -> a
g b
a recip :: Op a b -> Op a b
recip (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Fractional a => a -> a
recip (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f fromRational :: Rational -> Op a b
fromRational =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (Rational -> b -> a) -> Rational -> Op a b
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. a -> b -> a
forall a b. a -> b -> a
const (a -> b -> a) -> (Rational -> a) -> Rational -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. Rational -> a
forall a. Fractional a => Rational -> a
fromRational instanceFloating a =>Floating (Op a b )wherepi :: Op a b
pi =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> b -> a
forall a b. a -> b -> a
const a
forall a. Floating a => a
pi exp :: Op a b -> Op a b
exp (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
exp (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f sqrt :: Op a b -> Op a b
sqrt (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
sqrt (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f log :: Op a b -> Op a b
log (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
log (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f sin :: Op a b -> Op a b
sin (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
sin (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f tan :: Op a b -> Op a b
tan (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
tan (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f cos :: Op a b -> Op a b
cos (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
cos (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f asin :: Op a b -> Op a b
asin (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
asin (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f atan :: Op a b -> Op a b
atan (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
atan (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f acos :: Op a b -> Op a b
acos (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
acos (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f sinh :: Op a b -> Op a b
sinh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
sinh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f tanh :: Op a b -> Op a b
tanh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
tanh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f cosh :: Op a b -> Op a b
cosh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
cosh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f asinh :: Op a b -> Op a b
asinh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
asinh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f atanh :: Op a b -> Op a b
atanh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
atanh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f acosh :: Op a b -> Op a b
acosh (Op b -> a
f )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ a -> a
forall a. Floating a => a -> a
acosh (a -> a) -> (b -> a) -> b -> a
forall k (cat :: k -> k -> *) (b :: k) (c :: k) (a :: k).
Category cat =>
cat b c -> cat a b -> cat a c
. b -> a
f Op b -> a
f ** :: Op a b -> Op a b -> Op a b
** Op b -> a
g =(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->b -> a
f b
a a -> a -> a
forall a. Floating a => a -> a -> a
** b -> a
g b
a logBase :: Op a b -> Op a b -> Op a b
logBase (Op b -> a
f )(Op b -> a
g )=(b -> a) -> Op a b
forall a b. (b -> a) -> Op a b
Op ((b -> a) -> Op a b) -> (b -> a) -> Op a b
forall a b. (a -> b) -> a -> b
$ \b
a ->a -> a -> a
forall a. Floating a => a -> a -> a
logBase (b -> a
f b
a )(b -> a
g b
a )

AltStyle によって変換されたページ (->オリジナル) /