{-# LANGUAGE Trustworthy #-}{-# LANGUAGE CPP, NoImplicitPrelude, BangPatterns, MagicHash #-}------------------------------------------------------------------------------- |-- Module : Data.Bits-- Copyright : (c) The University of Glasgow 2001-- License : BSD-style (see the file libraries/base/LICENSE)---- Maintainer : libraries@haskell.org-- Stability : experimental-- Portability : portable---- This module defines bitwise operations for signed and unsigned-- integers. Instances of the class 'Bits' for the 'Int' and-- 'Integer' types are available from this module, and instances for-- explicitly sized integral types are available from the-- "Data.Int" and "Data.Word" modules.-------------------------------------------------------------------------------moduleData.Bits(Bits ((.&.) ,(.|.) ,xor ,complement ,shift ,rotate ,zeroBits ,bit ,setBit ,clearBit ,complementBit ,testBit ,bitSizeMaybe ,bitSize ,isSigned ,shiftL ,shiftR ,unsafeShiftL ,unsafeShiftR ,rotateL ,rotateR ,popCount ),FiniteBits (finiteBitSize ,countLeadingZeros ,countTrailingZeros ),bitDefault ,testBitDefault ,popCountDefault ,toIntegralSized )where-- Defines the @Bits@ class containing bit-based operations.-- See library document for details on the semantics of the-- individual operations. #include "MachDeps.h" importData.Maybe importGHC.Num importGHC.Base importGHC.Real infixl8`shift` ,`rotate` ,`shiftL` ,`shiftR` ,`rotateL` ,`rotateR` infixl7.&. infixl6`xor` infixl5.|. {-# DEPRECATEDbitSize"Use 'bitSizeMaybe' or 'finiteBitSize' instead"#-}-- deprecated in 7.8-- | The 'Bits' class defines bitwise operations over integral types.---- * Bits are numbered from 0 with bit 0 being the least-- significant bit.classEqa =>Bits a where{-# MINIMAL(.&.),(.|.),xor ,complement ,(shift |(shiftL ,shiftR )),(rotate |(rotateL ,rotateR )),bitSize ,bitSizeMaybe ,isSigned ,testBit ,bit ,popCount #-}-- | Bitwise \"and\"(.&.) ::a ->a ->a -- | Bitwise \"or\"(.|.) ::a ->a ->a -- | Bitwise \"xor\"xor ::a ->a ->a {-| Reverse all the bits in the argument -}complement ::a ->a {-| @'shift' x i@ shifts @x@ left by @i@ bits if @i@ is positive, or right by @-i@ bits otherwise. Right shifts perform sign extension on signed number types; i.e. they fill the top bits with 1 if the @x@ is negative and with 0 otherwise. An instance can define either this unified 'shift' or 'shiftL' and 'shiftR', depending on which is more convenient for the type in question. -}shift ::a ->Int->a a x `shift` Int i |Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <Int 0=a x a -> Int -> a forall a. Bits a => a -> Int -> a `shiftR` (-Int i )|Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool >Int 0=a x a -> Int -> a forall a. Bits a => a -> Int -> a `shiftL` Int i |Bool otherwise =a x {-| @'rotate' x i@ rotates @x@ left by @i@ bits if @i@ is positive, or right by @-i@ bits otherwise. For unbounded types like 'Integer', 'rotate' is equivalent to 'shift'. An instance can define either this unified 'rotate' or 'rotateL' and 'rotateR', depending on which is more convenient for the type in question. -}rotate ::a ->Int->a a x `rotate` Int i |Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <Int 0=a x a -> Int -> a forall a. Bits a => a -> Int -> a `rotateR` (-Int i )|Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool >Int 0=a x a -> Int -> a forall a. Bits a => a -> Int -> a `rotateL` Int i |Bool otherwise =a x {- -- Rotation can be implemented in terms of two shifts, but care is -- needed for negative values. This suggested implementation assumes -- 2's-complement arithmetic. It is commented out because it would -- require an extra context (Ord a) on the signature of 'rotate'. x `rotate` i | i<0 && isSigned x && x<0 = let left = i+bitSize x in ((x `shift` i) .&. complement ((-1) `shift` left)) .|. (x `shift` left) | i<0 = (x `shift` i) .|. (x `shift` (i+bitSize x)) | i==0 = x | i>0 = (x `shift` i) .|. (x `shift` (i-bitSize x)) -}-- | 'zeroBits' is the value with all bits unset.---- The following laws ought to hold (for all valid bit indices @/n/@):---- * @'clearBit' 'zeroBits' /n/ == 'zeroBits'@-- * @'setBit' 'zeroBits' /n/ == 'bit' /n/@-- * @'testBit' 'zeroBits' /n/ == False@-- * @'popCount' 'zeroBits' == 0@---- This method uses @'clearBit' ('bit' 0) 0@ as its default-- implementation (which ought to be equivalent to 'zeroBits' for-- types which possess a 0th bit).---- @since 4.7.0.0zeroBits ::a zeroBits =a -> Int -> a forall a. Bits a => a -> Int -> a clearBit (Int -> a forall a. Bits a => Int -> a bit Int 0)Int 0-- | @bit /i/@ is a value with the @/i/@th bit set and all other bits clear.---- Can be implemented using `bitDefault' if @a@ is also an-- instance of 'Num'.---- See also 'zeroBits'.bit ::Int->a -- | @x \`setBit\` i@ is the same as @x .|. bit i@setBit ::a ->Int->a -- | @x \`clearBit\` i@ is the same as @x .&. complement (bit i)@clearBit ::a ->Int->a -- | @x \`complementBit\` i@ is the same as @x \`xor\` bit i@complementBit ::a ->Int->a -- | Return 'True' if the @n@th bit of the argument is 1---- Can be implemented using `testBitDefault' if @a@ is also an-- instance of 'Num'.testBit ::a ->Int->Bool{-| Return the number of bits in the type of the argument. The actual value of the argument is ignored. Returns Nothing for types that do not have a fixed bitsize, like 'Integer'. @since 4.7.0.0 -}bitSizeMaybe ::a ->Maybe Int{-| Return the number of bits in the type of the argument. The actual value of the argument is ignored. The function 'bitSize' is undefined for types that do not have a fixed bitsize, like 'Integer'. Default implementation based upon 'bitSizeMaybe' provided since 4.12.0.0. -}bitSize ::a ->IntbitSize a b =Int -> Maybe Int -> Int forall a. a -> Maybe a -> a fromMaybe ([Char] -> Int forall a. HasCallStack => [Char] -> a error [Char] "bitSize is undefined")(a -> Maybe Int forall a. Bits a => a -> Maybe Int bitSizeMaybe a b ){-| Return 'True' if the argument is a signed type. The actual value of the argument is ignored -}isSigned ::a ->Bool{-# INLINEsetBit #-}{-# INLINEclearBit #-}{-# INLINEcomplementBit #-}a x `setBit` Int i =a x a -> a -> a forall a. Bits a => a -> a -> a .|. Int -> a forall a. Bits a => Int -> a bit Int i a x `clearBit` Int i =a x a -> a -> a forall a. Bits a => a -> a -> a .&. a -> a forall a. Bits a => a -> a complement (Int -> a forall a. Bits a => Int -> a bit Int i )a x `complementBit` Int i =a x a -> a -> a forall a. Bits a => a -> a -> a `xor` Int -> a forall a. Bits a => Int -> a bit Int i {-| Shift the argument left by the specified number of bits (which must be non-negative). Some instances may throw an 'Control.Exception.Overflow' exception if given a negative input. An instance can define either this and 'shiftR' or the unified 'shift', depending on which is more convenient for the type in question. -}shiftL ::a ->Int->a {-# INLINEshiftL #-}a x `shiftL` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `shift` Int i {-| Shift the argument left by the specified number of bits. The result is undefined for negative shift amounts and shift amounts greater or equal to the 'bitSize'. Defaults to 'shiftL' unless defined explicitly by an instance. @since 4.5.0.0 -}unsafeShiftL ::a ->Int->a {-# INLINEunsafeShiftL #-}a x `unsafeShiftL` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `shiftL` Int i {-| Shift the first argument right by the specified number of bits. The result is undefined for negative shift amounts and shift amounts greater or equal to the 'bitSize'. Some instances may throw an 'Control.Exception.Overflow' exception if given a negative input. Right shifts perform sign extension on signed number types; i.e. they fill the top bits with 1 if the @x@ is negative and with 0 otherwise. An instance can define either this and 'shiftL' or the unified 'shift', depending on which is more convenient for the type in question. -}shiftR ::a ->Int->a {-# INLINEshiftR #-}a x `shiftR` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `shift` (-Int i ){-| Shift the first argument right by the specified number of bits, which must be non-negative and smaller than the number of bits in the type. Right shifts perform sign extension on signed number types; i.e. they fill the top bits with 1 if the @x@ is negative and with 0 otherwise. Defaults to 'shiftR' unless defined explicitly by an instance. @since 4.5.0.0 -}unsafeShiftR ::a ->Int->a {-# INLINEunsafeShiftR #-}a x `unsafeShiftR` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `shiftR` Int i {-| Rotate the argument left by the specified number of bits (which must be non-negative). An instance can define either this and 'rotateR' or the unified 'rotate', depending on which is more convenient for the type in question. -}rotateL ::a ->Int->a {-# INLINErotateL #-}a x `rotateL` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `rotate` Int i {-| Rotate the argument right by the specified number of bits (which must be non-negative). An instance can define either this and 'rotateL' or the unified 'rotate', depending on which is more convenient for the type in question. -}rotateR ::a ->Int->a {-# INLINErotateR #-}a x `rotateR` Int i =a x a -> Int -> a forall a. Bits a => a -> Int -> a `rotate` (-Int i ){-| Return the number of set bits in the argument. This number is known as the population count or the Hamming weight. Can be implemented using `popCountDefault' if @a@ is also an instance of 'Num'. @since 4.5.0.0 -}popCount ::a ->Int-- |The 'FiniteBits' class denotes types with a finite, fixed number of bits.---- @since 4.7.0.0classBits b =>FiniteBits b where-- | Return the number of bits in the type of the argument.-- The actual value of the argument is ignored. Moreover, 'finiteBitSize'-- is total, in contrast to the deprecated 'bitSize' function it replaces.---- @-- 'finiteBitSize' = 'bitSize'-- 'bitSizeMaybe' = 'Just' . 'finiteBitSize'-- @---- @since 4.7.0.0finiteBitSize ::b ->Int-- | Count number of zero bits preceding the most significant set bit.---- @-- 'countLeadingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)-- @---- 'countLeadingZeros' can be used to compute log base 2 via---- @-- logBase2 x = 'finiteBitSize' x - 1 - 'countLeadingZeros' x-- @---- Note: The default implementation for this method is intentionally-- naive. However, the instances provided for the primitive-- integral types are implemented using CPU specific machine-- instructions.---- @since 4.8.0.0countLeadingZeros ::b ->IntcountLeadingZeros b x =(Int w Int -> Int -> Int forall a. Num a => a -> a -> a - Int 1)Int -> Int -> Int forall a. Num a => a -> a -> a - Int -> Int go (Int w Int -> Int -> Int forall a. Num a => a -> a -> a - Int 1)wherego :: Int -> Int go Int i |Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <Int 0=Int i -- no bit set|b -> Int -> Bool forall a. Bits a => a -> Int -> Bool testBit b x Int i =Int i |Bool otherwise =Int -> Int go (Int i Int -> Int -> Int forall a. Num a => a -> a -> a - Int 1)w :: Int w =b -> Int forall b. FiniteBits b => b -> Int finiteBitSize b x -- | Count number of zero bits following the least significant set bit.---- @-- 'countTrailingZeros' ('zeroBits' :: a) = finiteBitSize ('zeroBits' :: a)-- 'countTrailingZeros' . 'negate' = 'countTrailingZeros'-- @---- The related-- <http://en.wikipedia.org/wiki/Find_first_set find-first-set operation>-- can be expressed in terms of 'countTrailingZeros' as follows---- @-- findFirstSet x = 1 + 'countTrailingZeros' x-- @---- Note: The default implementation for this method is intentionally-- naive. However, the instances provided for the primitive-- integral types are implemented using CPU specific machine-- instructions.---- @since 4.8.0.0countTrailingZeros ::b ->IntcountTrailingZeros b x =Int -> Int go Int 0wherego :: Int -> Int go Int i |Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool >=Int w =Int i |b -> Int -> Bool forall a. Bits a => a -> Int -> Bool testBit b x Int i =Int i |Bool otherwise =Int -> Int go (Int i Int -> Int -> Int forall a. Num a => a -> a -> a + Int 1)w :: Int w =b -> Int forall b. FiniteBits b => b -> Int finiteBitSize b x -- The defaults below are written with lambdas so that e.g.-- bit = bitDefault-- is fully applied, so inlining will happen-- | Default implementation for 'bit'.---- Note that: @bitDefault i = 1 `shiftL` i@---- @since 4.6.0.0bitDefault ::(Bits a ,Num a )=>Int->a bitDefault :: Int -> a bitDefault =\Int i ->a 1a -> Int -> a forall a. Bits a => a -> Int -> a `shiftL` Int i {-# INLINEbitDefault #-}-- | Default implementation for 'testBit'.---- Note that: @testBitDefault x i = (x .&. bit i) /= 0@---- @since 4.6.0.0testBitDefault ::(Bits a ,Num a )=>a ->Int->BooltestBitDefault :: a -> Int -> Bool testBitDefault =\a x Int i ->(a x a -> a -> a forall a. Bits a => a -> a -> a .&. Int -> a forall a. Bits a => Int -> a bit Int i )a -> a -> Bool forall a. Eq a => a -> a -> Bool /=a 0{-# INLINEtestBitDefault #-}-- | Default implementation for 'popCount'.---- This implementation is intentionally naive. Instances are expected to provide-- an optimized implementation for their size.---- @since 4.6.0.0popCountDefault ::(Bits a ,Num a )=>a ->IntpopCountDefault :: a -> Int popCountDefault =Int -> a -> Int forall t t. (Num t, Num t, Bits t) => t -> t -> t go Int 0wherego :: t -> t -> t go !t c t 0=t c go t c t w =t -> t -> t go (t c t -> t -> t forall a. Num a => a -> a -> a + t 1)(t w t -> t -> t forall a. Bits a => a -> a -> a .&. (t w t -> t -> t forall a. Num a => a -> a -> a - t 1))-- clear the least significant{-# INLINABLEpopCountDefault #-}-- | Interpret 'Bool' as 1-bit bit-field---- @since 4.7.0.0instanceBits Boolwhere.&. :: Bool -> Bool -> Bool (.&.) =Bool -> Bool -> Bool (&&).|. :: Bool -> Bool -> Bool (.|.) =Bool -> Bool -> Bool (||)xor :: Bool -> Bool -> Bool xor =Bool -> Bool -> Bool forall a. Eq a => a -> a -> Bool (/=)complement :: Bool -> Bool complement =Bool -> Bool notshift :: Bool -> Int -> Bool shift Bool x Int 0=Bool x shift Bool _Int _=Bool Falserotate :: Bool -> Int -> Bool rotate Bool x Int _=Bool x bit :: Int -> Bool bit Int 0=Bool Truebit Int _=Bool FalsetestBit :: Bool -> Int -> Bool testBit Bool x Int 0=Bool x testBit Bool _Int _=Bool FalsebitSizeMaybe :: Bool -> Maybe Int bitSizeMaybe Bool _=Int -> Maybe Int forall a. a -> Maybe a Just Int 1bitSize :: Bool -> Int bitSize Bool _=Int 1isSigned :: Bool -> Bool isSigned Bool _=Bool FalsepopCount :: Bool -> Int popCount Bool False=Int 0popCount Bool True=Int 1-- | @since 4.7.0.0instanceFiniteBits BoolwherefiniteBitSize :: Bool -> Int finiteBitSize Bool _=Int 1countTrailingZeros :: Bool -> Int countTrailingZeros Bool x =ifBool x thenInt 0elseInt 1countLeadingZeros :: Bool -> Int countLeadingZeros Bool x =ifBool x thenInt 0elseInt 1-- | @since 2.01instanceBits Intwhere{-# INLINEshift #-}{-# INLINEbit #-}{-# INLINEtestBit #-}-- We want popCnt# to be inlined in user code so that `ghc -msse4.2`-- can compile it down to a popcnt instruction without an extra function call{-# INLINEpopCount #-}zeroBits :: Int zeroBits =Int 0bit :: Int -> Int bit =Int -> Int forall a. (Bits a, Num a) => Int -> a bitDefault testBit :: Int -> Int -> Bool testBit =Int -> Int -> Bool forall a. (Bits a, Num a) => a -> Int -> Bool testBitDefault (I#Int# x# ).&. :: Int -> Int -> Int .&. (I#Int# y# )=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `andI#`Int# y# )(I#Int# x# ).|. :: Int -> Int -> Int .|. (I#Int# y# )=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `orI#`Int# y# )(I#Int# x# )xor :: Int -> Int -> Int `xor` (I#Int# y# )=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `xorI#`Int# y# )complement :: Int -> Int complement (I#Int# x# )=Int# -> Int I#(Int# -> Int# notI#Int# x# )(I#Int# x# )shift :: Int -> Int -> Int `shift` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `iShiftL#` Int# i# )|Bool otherwise =Int# -> Int I#(Int# x# Int# -> Int# -> Int# `iShiftRA#` Int# -> Int# negateInt#Int# i# )(I#Int# x# )shiftL :: Int -> Int -> Int `shiftL` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `iShiftL#` Int# i# )|Bool otherwise =Int forall a. a overflowError (I#Int# x# )unsafeShiftL :: Int -> Int -> Int `unsafeShiftL` (I#Int# i# )=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `uncheckedIShiftL#`Int# i# )(I#Int# x# )shiftR :: Int -> Int -> Int `shiftR` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `iShiftRA#` Int# i# )|Bool otherwise =Int forall a. a overflowError (I#Int# x# )unsafeShiftR :: Int -> Int -> Int `unsafeShiftR` (I#Int# i# )=Int# -> Int I#(Int# x# Int# -> Int# -> Int# `uncheckedIShiftRA#`Int# i# ){-# INLINErotate #-}-- See Note [Constant folding for rotate](I#Int# x# )rotate :: Int -> Int -> Int `rotate` (I#Int# i# )=Int# -> Int I#((Int# x# Int# -> Int# -> Int# `uncheckedIShiftL#`Int# i'# )Int# -> Int# -> Int# `orI#`(Int# x# Int# -> Int# -> Int# `uncheckedIShiftRL#`(Int# wsib Int# -> Int# -> Int# -#Int# i'# )))where!i'# :: Int# i'# =Int# i# Int# -> Int# -> Int# `andI#`(Int# wsib Int# -> Int# -> Int# -#Int# 1#)!wsib :: Int# wsib =WORD_SIZE_IN_BITS#{- work around preprocessor problem (??) -}bitSizeMaybe :: Int -> Maybe Int bitSizeMaybe Int i =Int -> Maybe Int forall a. a -> Maybe a Just (Int -> Int forall b. FiniteBits b => b -> Int finiteBitSize Int i )bitSize :: Int -> Int bitSize Int i =Int -> Int forall b. FiniteBits b => b -> Int finiteBitSize Int i popCount :: Int -> Int popCount (I#Int# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# popCnt#(Int# -> Word# int2Word#Int# x# )))isSigned :: Int -> Bool isSigned Int _=Bool True-- | @since 4.6.0.0instanceFiniteBits IntwherefiniteBitSize :: Int -> Int finiteBitSize Int _=WORD_SIZE_IN_BITScountLeadingZeros :: Int -> Int countLeadingZeros (I#Int# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# clz#(Int# -> Word# int2Word#Int# x# ))){-# INLINEcountLeadingZeros #-}countTrailingZeros :: Int -> Int countTrailingZeros (I#Int# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# ctz#(Int# -> Word# int2Word#Int# x# ))){-# INLINEcountTrailingZeros #-}-- | @since 2.01instanceBits Wordwhere{-# INLINEshift #-}{-# INLINEbit #-}{-# INLINEtestBit #-}{-# INLINEpopCount #-}(W#Word# x# ).&. :: Word -> Word -> Word .&. (W#Word# y# )=Word# -> Word W#(Word# x# Word# -> Word# -> Word# `and#`Word# y# )(W#Word# x# ).|. :: Word -> Word -> Word .|. (W#Word# y# )=Word# -> Word W#(Word# x# Word# -> Word# -> Word# `or#`Word# y# )(W#Word# x# )xor :: Word -> Word -> Word `xor` (W#Word# y# )=Word# -> Word W#(Word# x# Word# -> Word# -> Word# `xor#`Word# y# )complement :: Word -> Word complement (W#Word# x# )=Word# -> Word W#(Word# -> Word# not#Word# x# )(W#Word# x# )shift :: Word -> Int -> Word `shift` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Word# -> Word W#(Word# x# Word# -> Int# -> Word# `shiftL#` Int# i# )|Bool otherwise =Word# -> Word W#(Word# x# Word# -> Int# -> Word# `shiftRL#` Int# -> Int# negateInt#Int# i# )(W#Word# x# )shiftL :: Word -> Int -> Word `shiftL` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Word# -> Word W#(Word# x# Word# -> Int# -> Word# `shiftL#` Int# i# )|Bool otherwise =Word forall a. a overflowError (W#Word# x# )unsafeShiftL :: Word -> Int -> Word `unsafeShiftL` (I#Int# i# )=Word# -> Word W#(Word# x# Word# -> Int# -> Word# `uncheckedShiftL#`Int# i# )(W#Word# x# )shiftR :: Word -> Int -> Word `shiftR` (I#Int# i# )|Int# -> Bool isTrue#(Int# i# Int# -> Int# -> Int# >=#Int# 0#)=Word# -> Word W#(Word# x# Word# -> Int# -> Word# `shiftRL#` Int# i# )|Bool otherwise =Word forall a. a overflowError (W#Word# x# )unsafeShiftR :: Word -> Int -> Word `unsafeShiftR` (I#Int# i# )=Word# -> Word W#(Word# x# Word# -> Int# -> Word# `uncheckedShiftRL#`Int# i# )(W#Word# x# )rotate :: Word -> Int -> Word `rotate` (I#Int# i# )|Int# -> Bool isTrue#(Int# i'# Int# -> Int# -> Int# ==#Int# 0#)=Word# -> Word W#Word# x# |Bool otherwise =Word# -> Word W#((Word# x# Word# -> Int# -> Word# `uncheckedShiftL#`Int# i'# )Word# -> Word# -> Word# `or#`(Word# x# Word# -> Int# -> Word# `uncheckedShiftRL#`(Int# wsib Int# -> Int# -> Int# -#Int# i'# )))where!i'# :: Int# i'# =Int# i# Int# -> Int# -> Int# `andI#`(Int# wsib Int# -> Int# -> Int# -#Int# 1#)!wsib :: Int# wsib =WORD_SIZE_IN_BITS#{- work around preprocessor problem (??) -}bitSizeMaybe :: Word -> Maybe Int bitSizeMaybe Word i =Int -> Maybe Int forall a. a -> Maybe a Just (Word -> Int forall b. FiniteBits b => b -> Int finiteBitSize Word i )bitSize :: Word -> Int bitSize Word i =Word -> Int forall b. FiniteBits b => b -> Int finiteBitSize Word i isSigned :: Word -> Bool isSigned Word _=Bool FalsepopCount :: Word -> Int popCount (W#Word# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# popCnt#Word# x# ))bit :: Int -> Word bit =Int -> Word forall a. (Bits a, Num a) => Int -> a bitDefault testBit :: Word -> Int -> Bool testBit =Word -> Int -> Bool forall a. (Bits a, Num a) => a -> Int -> Bool testBitDefault -- | @since 4.6.0.0instanceFiniteBits WordwherefiniteBitSize :: Word -> Int finiteBitSize Word _=WORD_SIZE_IN_BITScountLeadingZeros :: Word -> Int countLeadingZeros (W#Word# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# clz#Word# x# )){-# INLINEcountLeadingZeros #-}countTrailingZeros :: Word -> Int countTrailingZeros (W#Word# x# )=Int# -> Int I#(Word# -> Int# word2Int#(Word# -> Word# ctz#Word# x# )){-# INLINEcountTrailingZeros #-}-- | @since 2.01instanceBits Integerwhere.&. :: Integer -> Integer -> Integer (.&.) =Integer -> Integer -> Integer andInteger.|. :: Integer -> Integer -> Integer (.|.) =Integer -> Integer -> Integer orIntegerxor :: Integer -> Integer -> Integer xor =Integer -> Integer -> Integer xorIntegercomplement :: Integer -> Integer complement =Integer -> Integer complementIntegershift :: Integer -> Int -> Integer shift Integer x i :: Int i @(I#Int# i# )|Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool >=Int 0=Integer -> Int# -> Integer shiftLIntegerInteger x Int# i# |Bool otherwise =Integer -> Int# -> Integer shiftRIntegerInteger x (Int# -> Int# negateInt#Int# i# )testBit :: Integer -> Int -> Bool testBit Integer x (I#Int# i )=Integer -> Int# -> Bool testBitIntegerInteger x Int# i zeroBits :: Integer zeroBits =Integer 0bit :: Int -> Integer bit (I#Int# i# )=Int# -> Integer bitIntegerInt# i# popCount :: Integer -> Int popCount Integer x =Int# -> Int I#(Integer -> Int# popCountIntegerInteger x )rotate :: Integer -> Int -> Integer rotate Integer x Int i =Integer -> Int -> Integer forall a. Bits a => a -> Int -> a shift Integer x Int i -- since an Integer never wraps aroundbitSizeMaybe :: Integer -> Maybe Int bitSizeMaybe Integer _=Maybe Int forall a. Maybe a Nothing bitSize :: Integer -> Int bitSize Integer _=[Char] -> Int forall a. [Char] -> a errorWithoutStackTrace [Char] "Data.Bits.bitSize(Integer)"isSigned :: Integer -> Bool isSigned Integer _=Bool True-- | @since 4.8.0instanceBits Natural where.&. :: Natural -> Natural -> Natural (.&.) =Natural -> Natural -> Natural andNatural .|. :: Natural -> Natural -> Natural (.|.) =Natural -> Natural -> Natural orNatural xor :: Natural -> Natural -> Natural xor =Natural -> Natural -> Natural xorNatural complement :: Natural -> Natural complement Natural _=[Char] -> Natural forall a. [Char] -> a errorWithoutStackTrace [Char] "Bits.complement: Natural complement undefined"shift :: Natural -> Int -> Natural shift Natural x Int i |Int i Int -> Int -> Bool forall a. Ord a => a -> a -> Bool >=Int 0=Natural -> Int -> Natural shiftLNatural Natural x Int i |Bool otherwise =Natural -> Int -> Natural shiftRNatural Natural x (Int -> Int forall a. Num a => a -> a negate Int i )testBit :: Natural -> Int -> Bool testBit Natural x Int i =Natural -> Int -> Bool testBitNatural Natural x Int i zeroBits :: Natural zeroBits =Word# -> Natural wordToNaturalBase Word# 0##clearBit :: Natural -> Int -> Natural clearBit Natural x Int i =Natural x Natural -> Natural -> Natural forall a. Bits a => a -> a -> a `xor` (Int -> Natural forall a. Bits a => Int -> a bit Int i Natural -> Natural -> Natural forall a. Bits a => a -> a -> a .&. Natural x )bit :: Int -> Natural bit (I#Int# i# )=Int# -> Natural bitNatural Int# i# popCount :: Natural -> Int popCount Natural x =Natural -> Int popCountNatural Natural x rotate :: Natural -> Int -> Natural rotate Natural x Int i =Natural -> Int -> Natural forall a. Bits a => a -> Int -> a shift Natural x Int i -- since an Natural never wraps aroundbitSizeMaybe :: Natural -> Maybe Int bitSizeMaybe Natural _=Maybe Int forall a. Maybe a Nothing bitSize :: Natural -> Int bitSize Natural _=[Char] -> Int forall a. [Char] -> a errorWithoutStackTrace [Char] "Data.Bits.bitSize(Natural)"isSigned :: Natural -> Bool isSigned Natural _=Bool False------------------------------------------------------------------------------- | Attempt to convert an 'Integral' type @a@ to an 'Integral' type @b@ using-- the size of the types as measured by 'Bits' methods.---- A simpler version of this function is:---- > toIntegral :: (Integral a, Integral b) => a -> Maybe b-- > toIntegral x-- > | toInteger x == y = Just (fromInteger y)-- > | otherwise = Nothing-- > where-- > y = toInteger x---- This version requires going through 'Integer', which can be inefficient.-- However, @toIntegralSized@ is optimized to allow GHC to statically determine-- the relative type sizes (as measured by 'bitSizeMaybe' and 'isSigned') and-- avoid going through 'Integer' for many types. (The implementation uses-- 'fromIntegral', which is itself optimized with rules for @base@ types but may-- go through 'Integer' for some type pairs.)---- @since 4.8.0.0toIntegralSized ::(Integral a ,Integral b ,Bits a ,Bits b )=>a ->Maybe b toIntegralSized :: a -> Maybe b toIntegralSized a x -- See Note [toIntegralSized optimization]|Bool -> (a -> Bool) -> Maybe a -> Bool forall b a. b -> (a -> b) -> Maybe a -> b maybe Bool True(a -> a -> Bool forall a. Ord a => a -> a -> Bool <=a x )Maybe a yMinBound ,Bool -> (a -> Bool) -> Maybe a -> Bool forall b a. b -> (a -> b) -> Maybe a -> b maybe Bool True(a x a -> a -> Bool forall a. Ord a => a -> a -> Bool <=)Maybe a yMaxBound =b -> Maybe b forall a. a -> Maybe a Just b y |Bool otherwise =Maybe b forall a. Maybe a Nothing wherey :: b y =a -> b forall a b. (Integral a, Num b) => a -> b fromIntegral a x xWidth :: Maybe Int xWidth =a -> Maybe Int forall a. Bits a => a -> Maybe Int bitSizeMaybe a x yWidth :: Maybe Int yWidth =b -> Maybe Int forall a. Bits a => a -> Maybe Int bitSizeMaybe b y yMinBound :: Maybe a yMinBound |a -> b -> Bool forall a b. (Bits a, Bits b) => a -> b -> Bool isBitSubType a x b y =Maybe a forall a. Maybe a Nothing |a -> Bool forall a. Bits a => a -> Bool isSigned a x ,Bool -> Bool not(b -> Bool forall a. Bits a => a -> Bool isSigned b y )=a -> Maybe a forall a. a -> Maybe a Just a 0|a -> Bool forall a. Bits a => a -> Bool isSigned a x ,b -> Bool forall a. Bits a => a -> Bool isSigned b y ,Just Int yW <-Maybe Int yWidth =a -> Maybe a forall a. a -> Maybe a Just (a -> a forall a. Num a => a -> a negate (a -> a) -> a -> a forall a b. (a -> b) -> a -> b $ Int -> a forall a. Bits a => Int -> a bit (Int yW Int -> Int -> Int forall a. Num a => a -> a -> a - Int 1))-- Assumes sub-type|Bool otherwise =Maybe a forall a. Maybe a Nothing yMaxBound :: Maybe a yMaxBound |a -> b -> Bool forall a b. (Bits a, Bits b) => a -> b -> Bool isBitSubType a x b y =Maybe a forall a. Maybe a Nothing |a -> Bool forall a. Bits a => a -> Bool isSigned a x ,Bool -> Bool not(b -> Bool forall a. Bits a => a -> Bool isSigned b y ),Just Int xW <-Maybe Int xWidth ,Just Int yW <-Maybe Int yWidth ,Int xW Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=Int yW Int -> Int -> Int forall a. Num a => a -> a -> a + Int 1=Maybe a forall a. Maybe a Nothing -- Max bound beyond a's domain|Just Int yW <-Maybe Int yWidth =ifb -> Bool forall a. Bits a => a -> Bool isSigned b y thena -> Maybe a forall a. a -> Maybe a Just (Int -> a forall a. Bits a => Int -> a bit (Int yW Int -> Int -> Int forall a. Num a => a -> a -> a - Int 1)a -> a -> a forall a. Num a => a -> a -> a - a 1)elsea -> Maybe a forall a. a -> Maybe a Just (Int -> a forall a. Bits a => Int -> a bit Int yW a -> a -> a forall a. Num a => a -> a -> a - a 1)|Bool otherwise =Maybe a forall a. Maybe a Nothing {-# INLINABLEtoIntegralSized #-}-- | 'True' if the size of @a@ is @<=@ the size of @b@, where size is measured-- by 'bitSizeMaybe' and 'isSigned'.isBitSubType ::(Bits a ,Bits b )=>a ->b ->BoolisBitSubType :: a -> b -> Bool isBitSubType a x b y -- Reflexive|Maybe Int xWidth Maybe Int -> Maybe Int -> Bool forall a. Eq a => a -> a -> Bool ==Maybe Int yWidth ,Bool xSigned Bool -> Bool -> Bool forall a. Eq a => a -> a -> Bool ==Bool ySigned =Bool True-- Every integer is a subset of 'Integer'|Bool ySigned ,Maybe Int forall a. Maybe a Nothing Maybe Int -> Maybe Int -> Bool forall a. Eq a => a -> a -> Bool ==Maybe Int yWidth =Bool True|Bool -> Bool notBool xSigned ,Bool -> Bool notBool ySigned ,Maybe Int forall a. Maybe a Nothing Maybe Int -> Maybe Int -> Bool forall a. Eq a => a -> a -> Bool ==Maybe Int yWidth =Bool True-- Sub-type relations between fixed-with types|Bool xSigned Bool -> Bool -> Bool forall a. Eq a => a -> a -> Bool ==Bool ySigned ,Just Int xW <-Maybe Int xWidth ,Just Int yW <-Maybe Int yWidth =Int xW Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=Int yW |Bool -> Bool notBool xSigned ,Bool ySigned ,Just Int xW <-Maybe Int xWidth ,Just Int yW <-Maybe Int yWidth =Int xW Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <Int yW |Bool otherwise =Bool FalsewherexWidth :: Maybe Int xWidth =a -> Maybe Int forall a. Bits a => a -> Maybe Int bitSizeMaybe a x xSigned :: Bool xSigned =a -> Bool forall a. Bits a => a -> Bool isSigned a x yWidth :: Maybe Int yWidth =b -> Maybe Int forall a. Bits a => a -> Maybe Int bitSizeMaybe b y ySigned :: Bool ySigned =b -> Bool forall a. Bits a => a -> Bool isSigned b y {-# INLINEisBitSubType #-}{- Note [Constant folding for rotate] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The INLINE on the Int instance of rotate enables it to be constant folded. For example: sumU . mapU (`rotate` 3) . replicateU 10000000 $ (7 :: Int) goes to: Main.$wfold = \ (ww_sO7 :: Int#) (ww1_sOb :: Int#) -> case ww1_sOb of wild_XM { __DEFAULT -> Main.$wfold (+# ww_sO7 56) (+# wild_XM 1); 10000000 -> ww_sO7 whereas before it was left as a call to $wrotate. All other Bits instances seem to inline well enough on their own to enable constant folding; for example 'shift': sumU . mapU (`shift` 3) . replicateU 10000000 $ (7 :: Int) goes to: Main.$wfold = \ (ww_sOb :: Int#) (ww1_sOf :: Int#) -> case ww1_sOf of wild_XM { __DEFAULT -> Main.$wfold (+# ww_sOb 56) (+# wild_XM 1); 10000000 -> ww_sOb } -}-- Note [toIntegralSized optimization]-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-- The code in 'toIntegralSized' relies on GHC optimizing away statically-- decidable branches.---- If both integral types are statically known, GHC will be able optimize the-- code significantly (for @-O1@ and better).---- For instance (as of GHC 7.8.1) the following definitions:---- > w16_to_i32 = toIntegralSized :: Word16 -> Maybe Int32-- >-- > i16_to_w16 = toIntegralSized :: Int16 -> Maybe Word16---- are translated into the following (simplified) /GHC Core/ language:---- > w16_to_i32 = \x -> Just (case x of _ { W16# x# -> I32# (word2Int# x#) })-- >-- > i16_to_w16 = \x -> case eta of _-- > { I16# b1 -> case tagToEnum# (<=# 0 b1) of _-- > { False -> Nothing-- > ; True -> Just (W16# (narrow16Word# (int2Word# b1)))-- > }-- > }