{-# LANGUAGE Trustworthy #-}{-# LANGUAGE NoImplicitPrelude #-}------------------------------------------------------------------------------- |-- Module : GHC.IO.Encoding.Failure-- Copyright : (c) The University of Glasgow, 2008-2011-- License : see libraries/base/LICENSE---- Maintainer : libraries@haskell.org-- Stability : internal-- Portability : non-portable---- Types for specifying how text encoding/decoding fails-------------------------------------------------------------------------------moduleGHC.IO.Encoding.Failure(CodingFailureMode (..),codingFailureModeSuffix ,isSurrogate ,recoverDecode ,recoverEncode )whereimportGHC.IO importGHC.IO.Buffer importGHC.IO.Exception importGHC.Base importGHC.Char importGHC.Word importGHC.Show importGHC.Num importGHC.Real (fromIntegral )--import System.Posix.Internals-- | The 'CodingFailureMode' is used to construct 'System.IO.TextEncoding's,-- and specifies how they handle illegal sequences.dataCodingFailureMode =ErrorOnCodingFailure -- ^ Throw an error when an illegal sequence is encountered|IgnoreCodingFailure -- ^ Attempt to ignore and recover if an illegal sequence is-- encountered|TransliterateCodingFailure -- ^ Replace with the closest visual match upon an illegal-- sequence|RoundtripFailure -- ^ Use the private-use escape mechanism to attempt to allow-- illegal sequences to be roundtripped.deriving(Show -- ^ @since 4.4.0.0)-- This will only work properly for those encodings which are-- strict supersets of ASCII in the sense that valid ASCII data-- is also valid in that encoding. This is not true for-- e.g. UTF-16, because ASCII characters must be padded to two-- bytes to retain their meaning.-- Note [Roundtripping]-- ~~~~~~~~~~~~~~~~~~~~---- Roundtripping is based on the ideas of PEP383.---- We used to use the range of private-use characters from 0xEF80 to-- 0xEFFF designated for "encoding hacks" by the ConScript Unicode Registery-- to encode these characters.---- However, people didn't like this because it means we don't get-- guaranteed roundtripping for byte sequences that look like a UTF-8-- encoded codepoint 0xEFxx.---- So now like PEP383 we use lone surrogate codepoints 0xDCxx to escape-- undecodable bytes, even though that may confuse Unicode processing-- software written in Haskell. This guarantees roundtripping because-- unicode input that includes lone surrogate codepoints is invalid by-- definition.------ When we used private-use characters there was a technical problem when it-- came to encoding back to bytes using iconv. The iconv code will not fail when-- it tries to encode a private-use character (as it would if trying to encode-- a surrogate), which means that we wouldn't get a chance to replace it-- with the byte we originally escaped.---- To work around this, when filling the buffer to be encoded (in-- writeBlocks/withEncodedCString/newEncodedCString), we replaced the-- private-use characters with lone surrogates again! Likewise, when-- reading from a buffer (unpack/unpack_nl/peekEncodedCString) we had-- to do the inverse process.---- The user of String would never see these lone surrogates, but it-- ensured that iconv will throw an error when encountering them. We-- used lone surrogates in the range 0xDC00 to 0xDCFF for this purpose.codingFailureModeSuffix ::CodingFailureMode ->String codingFailureModeSuffix :: CodingFailureMode -> String codingFailureModeSuffix ErrorOnCodingFailure =""codingFailureModeSuffix IgnoreCodingFailure ="//IGNORE"codingFailureModeSuffix TransliterateCodingFailure ="//TRANSLIT"codingFailureModeSuffix RoundtripFailure ="//ROUNDTRIP"-- | In transliterate mode, we use this character when decoding-- unknown bytes.---- This is the defined Unicode replacement character:-- <http://www.fileformat.info/info/unicode/char/0fffd/index.htm>unrepresentableChar ::CharunrepresentableChar :: Char unrepresentableChar ='\xFFFD'-- It is extraordinarily important that this series of-- predicates/transformers gets inlined, because they tend to be used-- in inner loops related to text encoding. In particular,-- surrogatifyRoundtripCharacter must be inlined (see #5536)-- | Some characters are actually "surrogate" codepoints defined for-- use in UTF-16. We need to signal an invalid character if we detect-- them when encoding a sequence of 'Char's into 'Word8's because they-- won't give valid Unicode.---- We may also need to signal an invalid character if we detect them-- when encoding a sequence of 'Char's into 'Word8's because the-- 'RoundtripFailure' mode creates these to round-trip bytes through-- our internal UTF-16 encoding.{-# INLINEisSurrogate #-}isSurrogate ::Char->BoolisSurrogate :: Char -> Bool isSurrogate c :: Char c =(0xD800Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=Int x Bool -> Bool -> Bool &&Int x Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=0xDBFF)Bool -> Bool -> Bool ||(0xDC00Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=Int x Bool -> Bool -> Bool &&Int x Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=0xDFFF)wherex :: Int x =Char -> Int ord Char c -- Bytes (in Buffer Word8) --> lone surrogates (in Buffer CharBufElem){-# INLINEescapeToRoundtripCharacterSurrogate #-}escapeToRoundtripCharacterSurrogate ::Word8 ->CharescapeToRoundtripCharacterSurrogate :: Word8 -> Char escapeToRoundtripCharacterSurrogate b :: Word8 b |Word8 b Word8 -> Word8 -> Bool forall a. Ord a => a -> a -> Bool <128=Int -> Char chr (Word8 -> Int forall a b. (Integral a, Num b) => a -> b fromIntegral Word8 b )-- Disallow 'smuggling' of ASCII bytes. For roundtripping to-- work, this assumes encoding is ASCII-superset.|Bool otherwise =Int -> Char chr (0xDC00Int -> Int -> Int forall a. Num a => a -> a -> a + Word8 -> Int forall a b. (Integral a, Num b) => a -> b fromIntegral Word8 b )-- Lone surrogates (in Buffer CharBufElem) --> bytes (in Buffer Word8){-# INLINEunescapeRoundtripCharacterSurrogate #-}unescapeRoundtripCharacterSurrogate ::Char->Maybe Word8 unescapeRoundtripCharacterSurrogate :: Char -> Maybe Word8 unescapeRoundtripCharacterSurrogate c :: Char c |0xDC80Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <=Int x Bool -> Bool -> Bool &&Int x Int -> Int -> Bool forall a. Ord a => a -> a -> Bool <0xDD00=Word8 -> Maybe Word8 forall a. a -> Maybe a Just (Int -> Word8 forall a b. (Integral a, Num b) => a -> b fromIntegral Int x )-- Discard high byte|Bool otherwise =Maybe Word8 forall a. Maybe a Nothing wherex :: Int x =Char -> Int ord Char c recoverDecode ::CodingFailureMode ->Buffer Word8 ->Buffer Char->IO(Buffer Word8 ,Buffer Char)recoverDecode :: CodingFailureMode -> Buffer Word8 -> Buffer Char -> IO (Buffer Word8, Buffer Char) recoverDecode cfm :: CodingFailureMode cfm input :: Buffer Word8 input @Buffer {bufRaw :: forall e. Buffer e -> RawBuffer e bufRaw =RawBuffer Word8 iraw ,bufL :: forall e. Buffer e -> Int bufL =Int ir ,bufR :: forall e. Buffer e -> Int bufR =Int _}output :: Buffer Char output @Buffer {bufRaw :: forall e. Buffer e -> RawBuffer e bufRaw =RawBuffer Char oraw ,bufL :: forall e. Buffer e -> Int bufL =Int _,bufR :: forall e. Buffer e -> Int bufR =Int ow }=do--puts $ "recoverDecode " ++ show ircaseCodingFailureMode cfm ofErrorOnCodingFailure ->IO (Buffer Word8, Buffer Char) forall a. IO a ioe_decodingError IgnoreCodingFailure ->(Buffer Word8, Buffer Char) -> IO (Buffer Word8, Buffer Char) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Word8 input {bufL :: Int bufL =Int ir Int -> Int -> Int forall a. Num a => a -> a -> a + 1},Buffer Char output )TransliterateCodingFailure ->doInt ow' <-RawBuffer Char -> Int -> Char -> IO Int writeCharBuf RawBuffer Char oraw Int ow Char unrepresentableChar (Buffer Word8, Buffer Char) -> IO (Buffer Word8, Buffer Char) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Word8 input {bufL :: Int bufL =Int ir Int -> Int -> Int forall a. Num a => a -> a -> a + 1},Buffer Char output {bufR :: Int bufR =Int ow' })RoundtripFailure ->doWord8 b <-RawBuffer Word8 -> Int -> IO Word8 readWord8Buf RawBuffer Word8 iraw Int ir Int ow' <-RawBuffer Char -> Int -> Char -> IO Int writeCharBuf RawBuffer Char oraw Int ow (Word8 -> Char escapeToRoundtripCharacterSurrogate Word8 b )(Buffer Word8, Buffer Char) -> IO (Buffer Word8, Buffer Char) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Word8 input {bufL :: Int bufL =Int ir Int -> Int -> Int forall a. Num a => a -> a -> a + 1},Buffer Char output {bufR :: Int bufR =Int ow' })recoverEncode ::CodingFailureMode ->Buffer Char->Buffer Word8 ->IO(Buffer Char,Buffer Word8 )recoverEncode :: CodingFailureMode -> Buffer Char -> Buffer Word8 -> IO (Buffer Char, Buffer Word8) recoverEncode cfm :: CodingFailureMode cfm input :: Buffer Char input @Buffer {bufRaw :: forall e. Buffer e -> RawBuffer e bufRaw =RawBuffer Char iraw ,bufL :: forall e. Buffer e -> Int bufL =Int ir ,bufR :: forall e. Buffer e -> Int bufR =Int _}output :: Buffer Word8 output @Buffer {bufRaw :: forall e. Buffer e -> RawBuffer e bufRaw =RawBuffer Word8 oraw ,bufL :: forall e. Buffer e -> Int bufL =Int _,bufR :: forall e. Buffer e -> Int bufR =Int ow }=do(c :: Char c ,ir' :: Int ir' )<-RawBuffer Char -> Int -> IO (Char, Int) readCharBuf RawBuffer Char iraw Int ir --puts $ "recoverEncode " ++ show ir ++ " " ++ show ir'caseCodingFailureMode cfm ofIgnoreCodingFailure ->(Buffer Char, Buffer Word8) -> IO (Buffer Char, Buffer Word8) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Char input {bufL :: Int bufL =Int ir' },Buffer Word8 output )TransliterateCodingFailure ->doifChar c Char -> Char -> Bool forall a. Eq a => a -> a -> Bool =='?'then(Buffer Char, Buffer Word8) -> IO (Buffer Char, Buffer Word8) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Char input {bufL :: Int bufL =Int ir' },Buffer Word8 output )elsedo-- XXX: evil hack! To implement transliteration, we just-- poke an ASCII ? into the input buffer and tell the caller-- to try and decode again. This is *probably* safe given-- current uses of TextEncoding.---- The "if" test above ensures we skip if the encoding fails-- to deal with the ?, though this should never happen in-- practice as all encodings are in fact capable of-- reperesenting all ASCII characters.Int _ir' <-RawBuffer Char -> Int -> Char -> IO Int writeCharBuf RawBuffer Char iraw Int ir '?'(Buffer Char, Buffer Word8) -> IO (Buffer Char, Buffer Word8) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Char input ,Buffer Word8 output )-- This implementation does not work because e.g. UTF-16-- requires 2 bytes to encode a simple ASCII value--writeWord8Buf oraw ow unrepresentableByte--return (input { bufL=ir' }, output { bufR=ow+1 })RoundtripFailure |Just x :: Word8 x <-Char -> Maybe Word8 unescapeRoundtripCharacterSurrogate Char c ->doRawBuffer Word8 -> Int -> Word8 -> IO () writeWord8Buf RawBuffer Word8 oraw Int ow Word8 x (Buffer Char, Buffer Word8) -> IO (Buffer Char, Buffer Word8) forall (m :: * -> *) a. Monad m => a -> m a return (Buffer Char input {bufL :: Int bufL =Int ir' },Buffer Word8 output {bufR :: Int bufR =Int ow Int -> Int -> Int forall a. Num a => a -> a -> a + 1})_->IO (Buffer Char, Buffer Word8) forall a. IO a ioe_encodingError ioe_decodingError ::IOa ioe_decodingError :: IO a ioe_decodingError =IOException -> IO a forall a. IOException -> IO a ioException (Maybe Handle -> IOErrorType -> String -> String -> Maybe CInt -> Maybe String -> IOException IOError Maybe Handle forall a. Maybe a Nothing IOErrorType InvalidArgument "recoverDecode""invalid byte sequence"Maybe CInt forall a. Maybe a Nothing Maybe String forall a. Maybe a Nothing )ioe_encodingError ::IOa ioe_encodingError :: IO a ioe_encodingError =IOException -> IO a forall a. IOException -> IO a ioException (Maybe Handle -> IOErrorType -> String -> String -> Maybe CInt -> Maybe String -> IOException IOError Maybe Handle forall a. Maybe a Nothing IOErrorType InvalidArgument "recoverEncode""invalid character"Maybe CInt forall a. Maybe a Nothing Maybe String forall a. Maybe a Nothing )