{-# LANGUAGE BangPatterns #-}{-# LANGUAGE DeriveDataTypeable #-}{-# LANGUAGE FlexibleContexts #-}{-# LANGUAGE FlexibleInstances #-}{-# LANGUAGE GADTs #-}{-# LANGUAGE NoImplicitPrelude #-}{-# LANGUAGE DataKinds #-}{-# LANGUAGE PolyKinds #-}{-# LANGUAGE RankNTypes #-}{-# LANGUAGE ScopedTypeVariables #-}{-# LANGUAGE StandaloneDeriving #-}{-# LANGUAGE Trustworthy #-}{-# LANGUAGE TypeOperators #-}------------------------------------------------------------------------------- |-- Module : Data.Data-- Copyright : (c) The University of Glasgow, CWI 2001--2004-- License : BSD-style (see the file libraries/base/LICENSE)---- Maintainer : libraries@haskell.org-- Stability : experimental-- Portability : non-portable (local universal quantification)---- \"Scrap your boilerplate\" --- Generic programming in Haskell. See-- <http://www.haskell.org/haskellwiki/Research_papers/Generics#Scrap_your_boilerplate.21>.-- This module provides the 'Data' class with its primitives for-- generic programming, along with instances for many datatypes. It-- corresponds to a merge between the previous "Data.Generics.Basics"-- and almost all of "Data.Generics.Instances". The instances that are-- not present in this module were moved to the-- @Data.Generics.Instances@ module in the @syb@ package.---- For more information, please visit the new-- SYB wiki: <http://www.cs.uu.nl/wiki/bin/view/GenericProgramming/SYB>.-------------------------------------------------------------------------------moduleData.Data(-- * Module Data.Typeable re-exported for conveniencemoduleData.Typeable ,-- * The Data class for processing constructor applicationsData (gfoldl ,gunfold ,toConstr ,dataTypeOf ,dataCast1 ,-- mediate types and unary type constructorsdataCast2 ,-- mediate types and binary type constructors-- Generic maps defined in terms of gfoldlgmapT ,gmapQ ,gmapQl ,gmapQr ,gmapQi ,gmapM ,gmapMp ,gmapMo ),-- * Datatype representationsDataType ,-- abstract-- ** ConstructorsmkDataType ,mkIntType ,mkFloatType ,mkCharType ,mkNoRepType ,-- ** ObserversdataTypeName ,DataRep (..),dataTypeRep ,-- ** Convenience functionsrepConstr ,isAlgType ,dataTypeConstrs ,indexConstr ,maxConstrIndex ,isNorepType ,-- * Data constructor representationsConstr ,-- abstractConIndex ,-- alias for Int, start at 1Fixity (..),-- ** ConstructorsmkConstr ,mkIntegralConstr ,mkRealConstr ,mkCharConstr ,-- ** ObserversconstrType ,ConstrRep (..),constrRep ,constrFields ,constrFixity ,-- ** Convenience function: algebraic data typesconstrIndex ,-- ** From strings to constructors and vice versa: all data typesshowConstr ,readConstr ,-- * Convenience functions: take type constructors aparttyconUQname ,tyconModule ,-- * Generic operations defined in terms of 'gunfold'fromConstr ,fromConstrB ,fromConstrM )where------------------------------------------------------------------------------importData.Functor.Const importData.Either importData.Eq importData.Maybe importData.Monoid importData.Ord importData.Typeable importData.Version (Version (..))importGHC.Base hiding(Any,IntRep,FloatRep)importGHC.List importGHC.Num importGHC.Read importGHC.Show importText.Read (reads )-- Imports for the instancesimportData.Functor.Identity -- So we can give Data instance for IdentityimportData.Int -- So we can give Data instance for Int8, ...importData.Type.Coercion importData.Word -- So we can give Data instance for Word8, ...importGHC.Real -- So we can give Data instance for Ratio--import GHC.IOBase -- So we can give Data instance for IO, HandleimportGHC.Ptr -- So we can give Data instance for PtrimportGHC.ForeignPtr -- So we can give Data instance for ForeignPtrimportForeign.Ptr (IntPtr (..),WordPtr (..))-- So we can give Data instance for IntPtr and WordPtr--import GHC.Stable -- So we can give Data instance for StablePtr--import GHC.ST -- So we can give Data instance for ST--import GHC.Conc -- So we can give Data instance for MVar & Co.importGHC.Arr -- So we can give Data instance for ArrayimportqualifiedGHC.Generics asGenerics(Fixity (..))importGHC.Generics hiding(Fixity (..))-- So we can give Data instance for U1, V1, ...---------------------------------------------------------------------------------- The Data class--------------------------------------------------------------------------------{- |
The 'Data' class comprehends a fundamental primitive 'gfoldl' for
folding over constructor applications, say terms. This primitive can
be instantiated in several ways to map over the immediate subterms
of a term; see the @gmap@ combinators later in this class. Indeed, a
generic programmer does not necessarily need to use the ingenious gfoldl
primitive but rather the intuitive @gmap@ combinators. The 'gfoldl'
primitive is completed by means to query top-level constructors, to
turn constructor representations into proper terms, and to list all
possible datatype constructors. This completion allows us to serve
generic programming scenarios like read, show, equality, term generation.
The combinators 'gmapT', 'gmapQ', 'gmapM', etc are all provided with
default definitions in terms of 'gfoldl', leaving open the opportunity
to provide datatype-specific definitions.
(The inclusion of the @gmap@ combinators as members of class 'Data'
allows the programmer or the compiler to derive specialised, and maybe
more efficient code per datatype. /Note/: 'gfoldl' is more higher-order
than the @gmap@ combinators. This is subject to ongoing benchmarking
experiments. It might turn out that the @gmap@ combinators will be
moved out of the class 'Data'.)
Conceptually, the definition of the @gmap@ combinators in terms of the
primitive 'gfoldl' requires the identification of the 'gfoldl' function
arguments. Technically, we also need to identify the type constructor
@c@ for the construction of the result type from the folded term type.
In the definition of @gmapQ@/x/ combinators, we use phantom type
constructors for the @c@ in the type of 'gfoldl' because the result type
of a query does not involve the (polymorphic) type of the term argument.
In the definition of 'gmapQl' we simply use the plain constant type
constructor because 'gfoldl' is left-associative anyway and so it is
readily suited to fold a left-associative binary operation over the
immediate subterms. In the definition of gmapQr, extra effort is
needed. We use a higher-order accumulation trick to mediate between
left-associative constructor application vs. right-associative binary
operation (e.g., @(:)@). When the query is meant to compute a value
of type @r@, then the result type withing generic folding is @r -> r@.
So the result of folding is a function to which we finally pass the
right unit.
With the @-XDeriveDataTypeable@ option, GHC can generate instances of the
'Data' class automatically. For example, given the declaration
> data T a b = C1 a b | C2 deriving (Typeable, Data)
GHC will generate an instance that is equivalent to
> instance (Data a, Data b) => Data (T a b) where
> gfoldl k z (C1 a b) = z C1 `k` a `k` b
> gfoldl k z C2 = z C2
>
> gunfold k z c = case constrIndex c of
> 1 -> k (k (z C1))
> 2 -> z C2
>
> toConstr (C1 _ _) = con_C1
> toConstr C2 = con_C2
>
> dataTypeOf _ = ty_T
>
> con_C1 = mkConstr ty_T "C1" [] Prefix
> con_C2 = mkConstr ty_T "C2" [] Prefix
> ty_T = mkDataType "Module.T" [con_C1, con_C2]
This is suitable for datatypes that are exported transparently.
-}classTypeable a =>Data a where-- | Left-associative fold operation for constructor applications.---- The type of 'gfoldl' is a headache, but operationally it is a simple-- generalisation of a list fold.---- The default definition for 'gfoldl' is @'const' 'id'@, which is-- suitable for abstract datatypes with no substructures.gfoldl ::(foralld b .Data d =>c (d ->b )->d ->c b )-- ^ defines how nonempty constructor applications are-- folded. It takes the folded tail of the constructor-- application and its head, i.e., an immediate subterm,-- and combines them in some way.->(forallg .g ->c g )-- ^ defines how the empty constructor application is-- folded, like the neutral \/ start element for list-- folding.->a -- ^ structure to be folded.->c a -- ^ result, with a type defined in terms of @a@, but-- variability is achieved by means of type constructor-- @c@ for the construction of the actual result type.-- See the 'Data' instances in this file for an illustration of 'gfoldl'.gfoldl _z :: forall g. g -> c g
z =a -> c a
forall g. g -> c g
z -- | Unfolding constructor applicationsgunfold ::(forallb r .Data b =>c (b ->r )->c r )->(forallr .r ->c r )->Constr ->c a -- | Obtaining the constructor from a given datum.-- For proper terms, this is meant to be the top-level constructor.-- Primitive datatypes are here viewed as potentially infinite sets of-- values (i.e., constructors).toConstr ::a ->Constr -- | The outer type constructor of the typedataTypeOf ::a ->DataType ---------------------------------------------------------------------------------- Mediate types and type constructors---------------------------------------------------------------------------------- | Mediate types and unary type constructors.---- In 'Data' instances of the form---- @-- instance (Data a, ...) => Data (T a)-- @---- 'dataCast1' should be defined as 'gcast1'.---- The default definition is @'const' 'Nothing'@, which is appropriate-- for instances of other forms.dataCast1 ::Typeable t =>(foralld .Data d =>c (t d ))->Maybe (c a )dataCast1 _=Maybe (c a)
forall a. Maybe a
Nothing -- | Mediate types and binary type constructors.---- In 'Data' instances of the form---- @-- instance (Data a, Data b, ...) => Data (T a b)-- @---- 'dataCast2' should be defined as 'gcast2'.---- The default definition is @'const' 'Nothing'@, which is appropriate-- for instances of other forms.dataCast2 ::Typeable t =>(foralld e .(Data d ,Data e )=>c (t d e ))->Maybe (c a )dataCast2 _=Maybe (c a)
forall a. Maybe a
Nothing ---------------------------------------------------------------------------------- Typical generic maps defined in terms of gfoldl---------------------------------------------------------------------------------- | A generic transformation that maps over the immediate subterms---- The default definition instantiates the type constructor @c@ in the-- type of 'gfoldl' to an identity datatype constructor, using the-- isomorphism pair as injection and projection.gmapT ::(forallb .Data b =>b ->b )->a ->a -- Use the Identity datatype constructor-- to instantiate the type constructor c in the type of gfoldl,-- and perform injections Identity and projections runIdentity accordingly.--gmapT f :: forall b. Data b => b -> b
f x0 :: a
x0 =Identity a -> a
forall a. Identity a -> a
runIdentity ((forall d b. Data d => Identity (d -> b) -> d -> Identity b)
-> (forall g. g -> Identity g) -> a -> Identity a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Identity (d -> b) -> d -> Identity b
k forall g. g -> Identity g
Identity a
x0 )wherek ::Data d =>Identity (d ->b )->d ->Identity b k :: Identity (d -> b) -> d -> Identity b
k (Identity c :: d -> b
c )x :: d
x =b -> Identity b
forall g. g -> Identity g
Identity (d -> b
c (d -> d
forall b. Data b => b -> b
f d
x ))-- | A generic query with a left-associative binary operatorgmapQl ::forallr r' .(r ->r' ->r )->r ->(foralld .Data d =>d ->r' )->a ->r gmapQl o :: r -> r' -> r
o r :: r
r f :: forall d. Data d => d -> r'
f =Const r a -> r
forall a k (b :: k). Const a b -> a
getConst (Const r a -> r) -> (a -> Const r a) -> a -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall d b. Data d => Const r (d -> b) -> d -> Const r b)
-> (forall g. g -> Const r g) -> a -> Const r a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Const r (d -> b) -> d -> Const r b
k forall g. g -> Const r g
z wherek ::Data d =>Const r (d ->b )->d ->Const r b k :: Const r (d -> b) -> d -> Const r b
k c :: Const r (d -> b)
c x :: d
x =r -> Const r b
forall k a (b :: k). a -> Const a b
Const (r -> Const r b) -> r -> Const r b
forall a b. (a -> b) -> a -> b
$ (Const r (d -> b) -> r
forall a k (b :: k). Const a b -> a
getConst Const r (d -> b)
c )r -> r' -> r
`o` d -> r'
forall d. Data d => d -> r'
f d
x z ::g ->Const r g z :: g -> Const r g
z _=r -> Const r g
forall k a (b :: k). a -> Const a b
Const r
r -- | A generic query with a right-associative binary operatorgmapQr ::forallr r' .(r' ->r ->r )->r ->(foralld .Data d =>d ->r' )->a ->r gmapQr o :: r' -> r -> r
o r0 :: r
r0 f :: forall d. Data d => d -> r'
f x0 :: a
x0 =Qr r a -> r -> r
forall r k (a :: k). Qr r a -> r -> r
unQr ((forall d b. Data d => Qr r (d -> b) -> d -> Qr r b)
-> (forall g. g -> Qr r g) -> a -> Qr r a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Qr r (d -> b) -> d -> Qr r b
k (Qr r g -> g -> Qr r g
forall a b. a -> b -> a
const ((r -> r) -> Qr r g
forall k r (a :: k). (r -> r) -> Qr r a
Qr r -> r
forall a. a -> a
id ))a
x0 )r
r0 wherek ::Data d =>Qr r (d ->b )->d ->Qr r b k :: Qr r (d -> b) -> d -> Qr r b
k (Qr c :: r -> r
c )x :: d
x =(r -> r) -> Qr r b
forall k r (a :: k). (r -> r) -> Qr r a
Qr (\r :: r
r ->r -> r
c (d -> r'
forall d. Data d => d -> r'
f d
x r' -> r -> r
`o` r
r ))-- | A generic query that processes the immediate subterms and returns a list-- of results. The list is given in the same order as originally specified-- in the declaration of the data constructors.gmapQ ::(foralld .Data d =>d ->u )->a ->[u ]gmapQ f :: forall d. Data d => d -> u
f =(u -> [u] -> [u])
-> [u] -> (forall d. Data d => d -> u) -> a -> [u]
forall a r r'.
Data a =>
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r
gmapQr (:)[]forall d. Data d => d -> u
f -- | A generic query that processes one child by index (zero-based)gmapQi ::forallu .Int->(foralld .Data d =>d ->u )->a ->u gmapQi i :: Int
i f :: forall d. Data d => d -> u
f x :: a
x =case(forall d b. Data d => Qi u (d -> b) -> d -> Qi u b)
-> (forall g. g -> Qi u g) -> a -> Qi u a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Qi u (d -> b) -> d -> Qi u b
k forall g. g -> Qi u g
forall g q. g -> Qi q g
z a
x of{Qi _q :: Maybe u
q ->Maybe u -> u
forall a. HasCallStack => Maybe a -> a
fromJust Maybe u
q }wherek ::Data d =>Qi u (d ->b )->d ->Qi u b k :: Qi u (d -> b) -> d -> Qi u b
k (Qi i' :: Int
i' q :: Maybe u
q )a :: d
a =Int -> Maybe u -> Qi u b
forall k q (a :: k). Int -> Maybe q -> Qi q a
Qi (Int
i' Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1)(ifInt
i Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
i' thenu -> Maybe u
forall a. a -> Maybe a
Just (d -> u
forall d. Data d => d -> u
f d
a )elseMaybe u
q )z ::g ->Qi q g z :: g -> Qi q g
z _=Int -> Maybe q -> Qi q g
forall k q (a :: k). Int -> Maybe q -> Qi q a
Qi 0Maybe q
forall a. Maybe a
Nothing -- | A generic monadic transformation that maps over the immediate subterms---- The default definition instantiates the type constructor @c@ in-- the type of 'gfoldl' to the monad datatype constructor, defining-- injection and projection using 'return' and '>>='.gmapM ::forallm .Monad m =>(foralld .Data d =>d ->m d )->a ->m a -- Use immediately the monad datatype constructor-- to instantiate the type constructor c in the type of gfoldl,-- so injection and projection is done by return and >>=.--gmapM f :: forall d. Data d => d -> m d
f =(forall d b. Data d => m (d -> b) -> d -> m b)
-> (forall g. g -> m g) -> a -> m a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => m (d -> b) -> d -> m b
k forall g. g -> m g
forall (m :: * -> *) a. Monad m => a -> m a
return wherek ::Data d =>m (d ->b )->d ->m b k :: m (d -> b) -> d -> m b
k c :: m (d -> b)
c x :: d
x =dod -> b
c' <-m (d -> b)
c d
x' <-d -> m d
forall d. Data d => d -> m d
f d
x b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
c' d
x' )-- | Transformation of at least one immediate subterm does not failgmapMp ::forallm .MonadPlus m =>(foralld .Data d =>d ->m d )->a ->m a {-
The type constructor that we use here simply keeps track of the fact
if we already succeeded for an immediate subterm; see Mp below. To
this end, we couple the monadic computation with a Boolean.
-}gmapMp f :: forall d. Data d => d -> m d
f x :: a
x =Mp m a -> m (a, Bool)
forall (m :: * -> *) x. Mp m x -> m (x, Bool)
unMp ((forall d b. Data d => Mp m (d -> b) -> d -> Mp m b)
-> (forall g. g -> Mp m g) -> a -> Mp m a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Mp m (d -> b) -> d -> Mp m b
k forall g. g -> Mp m g
z a
x )m (a, Bool) -> ((a, Bool) -> m a) -> m a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(x' :: a
x' ,b :: Bool
b )->ifBool
b thena -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x' elsem a
forall (m :: * -> *) a. MonadPlus m => m a
mzero wherez ::g ->Mp m g z :: g -> Mp m g
z g :: g
g =m (g, Bool) -> Mp m g
forall (m :: * -> *) x. m (x, Bool) -> Mp m x
Mp ((g, Bool) -> m (g, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (g
g ,Bool
False))k ::Data d =>Mp m (d ->b )->d ->Mp m b k :: Mp m (d -> b) -> d -> Mp m b
k (Mp c :: m (d -> b, Bool)
c )y :: d
y =m (b, Bool) -> Mp m b
forall (m :: * -> *) x. m (x, Bool) -> Mp m x
Mp (m (d -> b, Bool)
c m (d -> b, Bool) -> ((d -> b, Bool) -> m (b, Bool)) -> m (b, Bool)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(h :: d -> b
h ,b :: Bool
b )->(d -> m d
forall d. Data d => d -> m d
f d
y m d -> (d -> m (b, Bool)) -> m (b, Bool)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \y' :: d
y' ->(b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
h d
y' ,Bool
True))m (b, Bool) -> m (b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` (b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
h d
y ,Bool
b ))-- | Transformation of one immediate subterm with successgmapMo ::forallm .MonadPlus m =>(foralld .Data d =>d ->m d )->a ->m a {-
We use the same pairing trick as for gmapMp,
i.e., we use an extra Bool component to keep track of the
fact whether an immediate subterm was processed successfully.
However, we cut of mapping over subterms once a first subterm
was transformed successfully.
-}gmapMo f :: forall d. Data d => d -> m d
f x :: a
x =Mp m a -> m (a, Bool)
forall (m :: * -> *) x. Mp m x -> m (x, Bool)
unMp ((forall d b. Data d => Mp m (d -> b) -> d -> Mp m b)
-> (forall g. g -> Mp m g) -> a -> Mp m a
forall a (c :: * -> *).
Data a =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a
gfoldl forall d b. Data d => Mp m (d -> b) -> d -> Mp m b
k forall g. g -> Mp m g
z a
x )m (a, Bool) -> ((a, Bool) -> m a) -> m a
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(x' :: a
x' ,b :: Bool
b )->ifBool
b thena -> m a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x' elsem a
forall (m :: * -> *) a. MonadPlus m => m a
mzero wherez ::g ->Mp m g z :: g -> Mp m g
z g :: g
g =m (g, Bool) -> Mp m g
forall (m :: * -> *) x. m (x, Bool) -> Mp m x
Mp ((g, Bool) -> m (g, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (g
g ,Bool
False))k ::Data d =>Mp m (d ->b )->d ->Mp m b k :: Mp m (d -> b) -> d -> Mp m b
k (Mp c :: m (d -> b, Bool)
c )y :: d
y =m (b, Bool) -> Mp m b
forall (m :: * -> *) x. m (x, Bool) -> Mp m x
Mp (m (d -> b, Bool)
c m (d -> b, Bool) -> ((d -> b, Bool) -> m (b, Bool)) -> m (b, Bool)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \(h :: d -> b
h ,b :: Bool
b )->ifBool
b then(b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
h d
y ,Bool
b )else(d -> m d
forall d. Data d => d -> m d
f d
y m d -> (d -> m (b, Bool)) -> m (b, Bool)
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \y' :: d
y' ->(b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
h d
y' ,Bool
True))m (b, Bool) -> m (b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` (b, Bool) -> m (b, Bool)
forall (m :: * -> *) a. Monad m => a -> m a
return (d -> b
h d
y ,Bool
b ))-- | Type constructor for adding counters to queriesdataQi q a =Qi Int(Maybe q )-- | The type constructor used in definition of gmapQrnewtypeQr r a =Qr {Qr r a -> r -> r
unQr ::r ->r }-- | The type constructor used in definition of gmapMpnewtypeMp m x =Mp {Mp m x -> m (x, Bool)
unMp ::m (x ,Bool)}---------------------------------------------------------------------------------- Generic unfolding---------------------------------------------------------------------------------- | Build a term skeletonfromConstr ::Data a =>Constr ->a fromConstr :: Constr -> a
fromConstr =(forall d. Data d => d) -> Constr -> a
forall a. Data a => (forall d. Data d => d) -> Constr -> a
fromConstrB ([Char] -> d
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.fromConstr")-- | Build a term and use a generic function for subtermsfromConstrB ::Data a =>(foralld .Data d =>d )->Constr ->a fromConstrB :: (forall d. Data d => d) -> Constr -> a
fromConstrB f :: forall d. Data d => d
f =Identity a -> a
forall a. Identity a -> a
runIdentity (Identity a -> a) -> (Constr -> Identity a) -> Constr -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall b r. Data b => Identity (b -> r) -> Identity r)
-> (forall g. g -> Identity g) -> Constr -> Identity a
forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a
gunfold forall b r. Data b => Identity (b -> r) -> Identity r
k forall g. g -> Identity g
z wherek ::forallb r .Data b =>Identity (b ->r )->Identity r k :: Identity (b -> r) -> Identity r
k c :: Identity (b -> r)
c =r -> Identity r
forall g. g -> Identity g
Identity (Identity (b -> r) -> b -> r
forall a. Identity a -> a
runIdentity Identity (b -> r)
c b
forall d. Data d => d
f )z ::forallr .r ->Identity r z :: r -> Identity r
z =r -> Identity r
forall g. g -> Identity g
Identity -- | Monadic variation on 'fromConstrB'fromConstrM ::forallm a .(Monad m ,Data a )=>(foralld .Data d =>m d )->Constr ->m a fromConstrM :: (forall d. Data d => m d) -> Constr -> m a
fromConstrM f :: forall d. Data d => m d
f =(forall b r. Data b => m (b -> r) -> m r)
-> (forall r. r -> m r) -> Constr -> m a
forall a (c :: * -> *).
Data a =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a
gunfold forall b r. Data b => m (b -> r) -> m r
k forall r. r -> m r
z wherek ::forallb r .Data b =>m (b ->r )->m r k :: m (b -> r) -> m r
k c :: m (b -> r)
c =do{b -> r
c' <-m (b -> r)
c ;b
b <-m b
forall d. Data d => m d
f ;r -> m r
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> r
c' b
b )}z ::forallr .r ->m r z :: r -> m r
z =r -> m r
forall (m :: * -> *) a. Monad m => a -> m a
return ---------------------------------------------------------------------------------- Datatype and constructor representations------------------------------------------------------------------------------------ | Representation of datatypes.-- A package of constructor representations with names of type and module.--dataDataType =DataType {DataType -> [Char]
tycon ::String ,DataType -> DataRep
datarep ::DataRep }derivingShow -- ^ @since 4.0.0.0-- | Representation of constructors. Note that equality on constructors-- with different types may not work -- i.e. the constructors for 'False' and-- 'Nothing' may compare equal.dataConstr =Constr {Constr -> ConstrRep
conrep ::ConstrRep ,Constr -> [Char]
constring ::String ,Constr -> [[Char]]
confields ::[String ]-- for AlgRep only,Constr -> Fixity
confixity ::Fixity -- for AlgRep only,Constr -> DataType
datatype ::DataType }-- | @since 4.0.0.0instanceShow Constr whereshow :: Constr -> [Char]
show =Constr -> [Char]
constring -- | Equality of constructors---- @since 4.0.0.0instanceEqConstr wherec :: Constr
c == :: Constr -> Constr -> Bool
==c' :: Constr
c' =Constr -> ConstrRep
constrRep Constr
c ConstrRep -> ConstrRep -> Bool
forall a. Eq a => a -> a -> Bool
==Constr -> ConstrRep
constrRep Constr
c' -- | Public representation of datatypesdataDataRep =AlgRep [Constr ]|IntRep |FloatRep |CharRep |NoRep deriving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)-- The list of constructors could be an array, a balanced tree, or others.-- | Public representation of constructorsdataConstrRep =AlgConstr ConIndex |IntConstr Integer|FloatConstr Rational |CharConstr Charderiving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)-- | Unique index for datatype constructors,-- counting from 1 in the order they are given in the program text.typeConIndex =Int-- | Fixity of constructorsdataFixity =Prefix |Infix -- Later: add associativity and precedencederiving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)---------------------------------------------------------------------------------- Observers for datatype representations---------------------------------------------------------------------------------- | Gets the type constructor including the moduledataTypeName ::DataType ->String dataTypeName :: DataType -> [Char]
dataTypeName =DataType -> [Char]
tycon -- | Gets the public presentation of a datatypedataTypeRep ::DataType ->DataRep dataTypeRep :: DataType -> DataRep
dataTypeRep =DataType -> DataRep
datarep -- | Gets the datatype of a constructorconstrType ::Constr ->DataType constrType :: Constr -> DataType
constrType =Constr -> DataType
datatype -- | Gets the public presentation of constructorsconstrRep ::Constr ->ConstrRep constrRep :: Constr -> ConstrRep
constrRep =Constr -> ConstrRep
conrep -- | Look up a constructor by its representationrepConstr ::DataType ->ConstrRep ->Constr repConstr :: DataType -> ConstrRep -> Constr
repConstr dt :: DataType
dt cr :: ConstrRep
cr =case(DataType -> DataRep
dataTypeRep DataType
dt ,ConstrRep
cr )of(AlgRep cs :: [Constr]
cs ,AlgConstr i :: Int
i )->[Constr]
cs [Constr] -> Int -> Constr
forall a. [a] -> Int -> a
!! (Int
i Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1)(IntRep ,IntConstr i :: Integer
i )->DataType -> Integer -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
dt Integer
i (FloatRep ,FloatConstr f :: Rational
f )->DataType -> Rational -> Constr
forall a. (Real a, Show a) => DataType -> a -> Constr
mkRealConstr DataType
dt Rational
f (CharRep ,CharConstr c :: Char
c )->DataType -> Char -> Constr
mkCharConstr DataType
dt Char
c _->[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.repConstr: The given ConstrRep does not fit to the given DataType."---------------------------------------------------------------------------------- Representations of algebraic data types---------------------------------------------------------------------------------- | Constructs an algebraic datatypemkDataType ::String ->[Constr ]->DataType mkDataType :: [Char] -> [Constr] -> DataType
mkDataType str :: [Char]
str cs :: [Constr]
cs =DataType :: [Char] -> DataRep -> DataType
DataType {tycon :: [Char]
tycon =[Char]
str ,datarep :: DataRep
datarep =[Constr] -> DataRep
AlgRep [Constr]
cs }-- | Constructs a constructormkConstr ::DataType ->String ->[String ]->Fixity ->Constr mkConstr :: DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr dt :: DataType
dt str :: [Char]
str fields :: [[Char]]
fields fix :: Fixity
fix =Constr :: ConstrRep -> [Char] -> [[Char]] -> Fixity -> DataType -> Constr
Constr {conrep :: ConstrRep
conrep =Int -> ConstrRep
AlgConstr Int
idx ,constring :: [Char]
constring =[Char]
str ,confields :: [[Char]]
confields =[[Char]]
fields ,confixity :: Fixity
confixity =Fixity
fix ,datatype :: DataType
datatype =DataType
dt }whereidx :: Int
idx =[Int] -> Int
forall a. [a] -> a
head [Int
i |(c :: Constr
c ,i :: Int
i )<-DataType -> [Constr]
dataTypeConstrs DataType
dt [Constr] -> [Int] -> [(Constr, Int)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [1..],Constr -> [Char]
showConstr Constr
c [Char] -> [Char] -> Bool
forall a. Eq a => a -> a -> Bool
==[Char]
str ]-- | Gets the constructors of an algebraic datatypedataTypeConstrs ::DataType ->[Constr ]dataTypeConstrs :: DataType -> [Constr]
dataTypeConstrs dt :: DataType
dt =caseDataType -> DataRep
datarep DataType
dt of(AlgRep cons :: [Constr]
cons )->[Constr]
cons _->[Char] -> [Constr]
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> [Constr]) -> [Char] -> [Constr]
forall a b. (a -> b) -> a -> b
$ "Data.Data.dataTypeConstrs is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an algebraic data type."-- | Gets the field labels of a constructor. The list of labels-- is returned in the same order as they were given in the original-- constructor declaration.constrFields ::Constr ->[String ]constrFields :: Constr -> [[Char]]
constrFields =Constr -> [[Char]]
confields -- | Gets the fixity of a constructorconstrFixity ::Constr ->Fixity constrFixity :: Constr -> Fixity
constrFixity =Constr -> Fixity
confixity ---------------------------------------------------------------------------------- From strings to constr's and vice versa: all data types---------------------------------------------------------------------------------- | Gets the string for a constructorshowConstr ::Constr ->String showConstr :: Constr -> [Char]
showConstr =Constr -> [Char]
constring -- | Lookup a constructor via a stringreadConstr ::DataType ->String ->Maybe Constr readConstr :: DataType -> [Char] -> Maybe Constr
readConstr dt :: DataType
dt str :: [Char]
str =caseDataType -> DataRep
dataTypeRep DataType
dt ofAlgRep cons :: [Constr]
cons ->[Constr] -> Maybe Constr
idx [Constr]
cons IntRep ->(Integer -> Constr) -> Maybe Constr
forall t. Read t => (t -> Constr) -> Maybe Constr
mkReadCon (\i :: Integer
i ->(DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt [Char]
str (Integer -> ConstrRep
IntConstr Integer
i )))FloatRep ->(Double -> Constr) -> Maybe Constr
forall t. Read t => (t -> Constr) -> Maybe Constr
mkReadCon Double -> Constr
ffloat CharRep ->(Char -> Constr) -> Maybe Constr
forall t. Read t => (t -> Constr) -> Maybe Constr
mkReadCon (\c :: Char
c ->(DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt [Char]
str (Char -> ConstrRep
CharConstr Char
c )))NoRep ->Maybe Constr
forall a. Maybe a
Nothing where-- Read a value and build a constructormkReadCon ::Read t =>(t ->Constr )->Maybe Constr mkReadCon :: (t -> Constr) -> Maybe Constr
mkReadCon f :: t -> Constr
f =case(ReadS t
forall a. Read a => ReadS a
reads [Char]
str )of[(t :: t
t ,"")]->Constr -> Maybe Constr
forall a. a -> Maybe a
Just (t -> Constr
f t
t )_->Maybe Constr
forall a. Maybe a
Nothing -- Traverse list of algebraic datatype constructorsidx ::[Constr ]->Maybe Constr idx :: [Constr] -> Maybe Constr
idx cons :: [Constr]
cons =letfit :: [Constr]
fit =(Constr -> Bool) -> [Constr] -> [Constr]
forall a. (a -> Bool) -> [a] -> [a]
filter ([Char] -> [Char] -> Bool
forall a. Eq a => a -> a -> Bool
(==)[Char]
str ([Char] -> Bool) -> (Constr -> [Char]) -> Constr -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Constr -> [Char]
showConstr )[Constr]
cons inif[Constr]
fit [Constr] -> [Constr] -> Bool
forall a. Eq a => a -> a -> Bool
==[]thenMaybe Constr
forall a. Maybe a
Nothing elseConstr -> Maybe Constr
forall a. a -> Maybe a
Just ([Constr] -> Constr
forall a. [a] -> a
head [Constr]
fit )ffloat ::Double->Constr ffloat :: Double -> Constr
ffloat =DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt [Char]
str (ConstrRep -> Constr) -> (Double -> ConstrRep) -> Double -> Constr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Rational -> ConstrRep
FloatConstr (Rational -> ConstrRep)
-> (Double -> Rational) -> Double -> ConstrRep
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Rational
forall a. Real a => a -> Rational
toRational ---------------------------------------------------------------------------------- Convenience functions: algebraic data types---------------------------------------------------------------------------------- | Test for an algebraic typeisAlgType ::DataType ->BoolisAlgType :: DataType -> Bool
isAlgType dt :: DataType
dt =caseDataType -> DataRep
datarep DataType
dt of(AlgRep _)->Bool
True_->Bool
False-- | Gets the constructor for an index (algebraic datatypes only)indexConstr ::DataType ->ConIndex ->Constr indexConstr :: DataType -> Int -> Constr
indexConstr dt :: DataType
dt idx :: Int
idx =caseDataType -> DataRep
datarep DataType
dt of(AlgRep cs :: [Constr]
cs )->[Constr]
cs [Constr] -> Int -> Constr
forall a. [a] -> Int -> a
!! (Int
idx Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1)_->[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr
forall a b. (a -> b) -> a -> b
$ "Data.Data.indexConstr is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an algebraic data type."-- | Gets the index of a constructor (algebraic datatypes only)constrIndex ::Constr ->ConIndex constrIndex :: Constr -> Int
constrIndex con :: Constr
con =caseConstr -> ConstrRep
constrRep Constr
con of(AlgConstr idx :: Int
idx )->Int
idx _->[Char] -> Int
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Int) -> [Char] -> Int
forall a b. (a -> b) -> a -> b
$ "Data.Data.constrIndex is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName (Constr -> DataType
constrType Constr
con )[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an algebraic data type."-- | Gets the maximum constructor index of an algebraic datatypemaxConstrIndex ::DataType ->ConIndex maxConstrIndex :: DataType -> Int
maxConstrIndex dt :: DataType
dt =caseDataType -> DataRep
dataTypeRep DataType
dt ofAlgRep cs :: [Constr]
cs ->[Constr] -> Int
forall a. [a] -> Int
length [Constr]
cs _->[Char] -> Int
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Int) -> [Char] -> Int
forall a b. (a -> b) -> a -> b
$ "Data.Data.maxConstrIndex is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an algebraic data type."---------------------------------------------------------------------------------- Representation of primitive types---------------------------------------------------------------------------------- | Constructs the 'Int' typemkIntType ::String ->DataType mkIntType :: [Char] -> DataType
mkIntType =DataRep -> [Char] -> DataType
mkPrimType DataRep
IntRep -- | Constructs the 'Float' typemkFloatType ::String ->DataType mkFloatType :: [Char] -> DataType
mkFloatType =DataRep -> [Char] -> DataType
mkPrimType DataRep
FloatRep -- | Constructs the 'Char' typemkCharType ::String ->DataType mkCharType :: [Char] -> DataType
mkCharType =DataRep -> [Char] -> DataType
mkPrimType DataRep
CharRep -- | Helper for 'mkIntType', 'mkFloatType'mkPrimType ::DataRep ->String ->DataType mkPrimType :: DataRep -> [Char] -> DataType
mkPrimType dr :: DataRep
dr str :: [Char]
str =DataType :: [Char] -> DataRep -> DataType
DataType {tycon :: [Char]
tycon =[Char]
str ,datarep :: DataRep
datarep =DataRep
dr }-- Makes a constructor for primitive typesmkPrimCon ::DataType ->String ->ConstrRep ->Constr mkPrimCon :: DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon dt :: DataType
dt str :: [Char]
str cr :: ConstrRep
cr =Constr :: ConstrRep -> [Char] -> [[Char]] -> Fixity -> DataType -> Constr
Constr {datatype :: DataType
datatype =DataType
dt ,conrep :: ConstrRep
conrep =ConstrRep
cr ,constring :: [Char]
constring =[Char]
str ,confields :: [[Char]]
confields =[Char] -> [[Char]]
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.confields",confixity :: Fixity
confixity =[Char] -> Fixity
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.confixity"}mkIntegralConstr ::(Integral a ,Show a )=>DataType ->a ->Constr mkIntegralConstr :: DataType -> a -> Constr
mkIntegralConstr dt :: DataType
dt i :: a
i =caseDataType -> DataRep
datarep DataType
dt ofIntRep ->DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt (a -> [Char]
forall a. Show a => a -> [Char]
show a
i )(Integer -> ConstrRep
IntConstr (a -> Integer
forall a. Integral a => a -> Integer
toInteger a
i ))_->[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr
forall a b. (a -> b) -> a -> b
$ "Data.Data.mkIntegralConstr is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an Integral data type."mkRealConstr ::(Real a ,Show a )=>DataType ->a ->Constr mkRealConstr :: DataType -> a -> Constr
mkRealConstr dt :: DataType
dt f :: a
f =caseDataType -> DataRep
datarep DataType
dt ofFloatRep ->DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt (a -> [Char]
forall a. Show a => a -> [Char]
show a
f )(Rational -> ConstrRep
FloatConstr (a -> Rational
forall a. Real a => a -> Rational
toRational a
f ))_->[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr
forall a b. (a -> b) -> a -> b
$ "Data.Data.mkRealConstr is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not a Real data type."-- | Makes a constructor for 'Char'.mkCharConstr ::DataType ->Char->Constr mkCharConstr :: DataType -> Char -> Constr
mkCharConstr dt :: DataType
dt c :: Char
c =caseDataType -> DataRep
datarep DataType
dt ofCharRep ->DataType -> [Char] -> ConstrRep -> Constr
mkPrimCon DataType
dt (Char -> [Char]
forall a. Show a => a -> [Char]
show Char
c )(Char -> ConstrRep
CharConstr Char
c )_->[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr
forall a b. (a -> b) -> a -> b
$ "Data.Data.mkCharConstr is not supported for "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ DataType -> [Char]
dataTypeName DataType
dt [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ", as it is not an Char data type."---------------------------------------------------------------------------------- Non-representations for non-representable types---------------------------------------------------------------------------------- | Constructs a non-representation for a non-representable typemkNoRepType ::String ->DataType mkNoRepType :: [Char] -> DataType
mkNoRepType str :: [Char]
str =DataType :: [Char] -> DataRep -> DataType
DataType {tycon :: [Char]
tycon =[Char]
str ,datarep :: DataRep
datarep =DataRep
NoRep }-- | Test for a non-representable typeisNorepType ::DataType ->BoolisNorepType :: DataType -> Bool
isNorepType dt :: DataType
dt =caseDataType -> DataRep
datarep DataType
dt ofNoRep ->Bool
True_->Bool
False---------------------------------------------------------------------------------- Convenience for qualified type constructors---------------------------------------------------------------------------------- | Gets the unqualified type constructor:-- drop *.*.*... before name--tyconUQname ::String ->String tyconUQname :: ShowS
tyconUQname x :: [Char]
x =letx' :: [Char]
x' =(Char -> Bool) -> ShowS
forall a. (a -> Bool) -> [a] -> [a]
dropWhile (Bool -> Bool
not(Bool -> Bool) -> (Char -> Bool) -> Char -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
(==)'.')[Char]
x inif[Char]
x' [Char] -> [Char] -> Bool
forall a. Eq a => a -> a -> Bool
==[]then[Char]
x elseShowS
tyconUQname (ShowS
forall a. [a] -> [a]
tail [Char]
x' )-- | Gets the module of a type constructor:-- take *.*.*... before nametyconModule ::String ->String tyconModule :: ShowS
tyconModule x :: [Char]
x =let(a :: [Char]
a ,b :: [Char]
b )=(Char -> Bool) -> [Char] -> ([Char], [Char])
forall a. (a -> Bool) -> [a] -> ([a], [a])
break (Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
(==)'.')[Char]
x inif[Char]
b [Char] -> [Char] -> Bool
forall a. Eq a => a -> a -> Bool
==""then[Char]
b else[Char]
a [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ ShowS
tyconModule' (ShowS
forall a. [a] -> [a]
tail [Char]
b )wheretyconModule' :: ShowS
tyconModule' y :: [Char]
y =lety' :: [Char]
y' =ShowS
tyconModule [Char]
y inif[Char]
y' [Char] -> [Char] -> Bool
forall a. Eq a => a -> a -> Bool
==""then""else('.'Char -> ShowS
forall a. a -> [a] -> [a]
:[Char]
y' )---------------------------------------------------------------------------------------------------------------------------------------------------------------- Instances of the Data class for Prelude-like types.-- We define top-level definitions for representations.---------------------------------------------------------------------------------- | @since 4.0.0.0derivinginstanceData Bool------------------------------------------------------------------------------charType ::DataType charType :: DataType
charType =[Char] -> DataType
mkCharType "Prelude.Char"-- | @since 4.0.0.0instanceData CharwheretoConstr :: Char -> Constr
toConstr x :: Char
x =DataType -> Char -> Constr
mkCharConstr DataType
charType Char
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Char
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(CharConstr x :: Char
x )->Char -> c Char
forall r. r -> c r
z Char
x _->[Char] -> c Char
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Char) -> [Char] -> c Char
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Char."dataTypeOf :: Char -> DataType
dataTypeOf _=DataType
charType ------------------------------------------------------------------------------floatType ::DataType floatType :: DataType
floatType =[Char] -> DataType
mkFloatType "Prelude.Float"-- | @since 4.0.0.0instanceData FloatwheretoConstr :: Float -> Constr
toConstr =DataType -> Float -> Constr
forall a. (Real a, Show a) => DataType -> a -> Constr
mkRealConstr DataType
floatType gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Float
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(FloatConstr x :: Rational
x )->Float -> c Float
forall r. r -> c r
z (Rational -> Float
forall a b. (Real a, Fractional b) => a -> b
realToFrac Rational
x )_->[Char] -> c Float
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Float) -> [Char] -> c Float
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Float."dataTypeOf :: Float -> DataType
dataTypeOf _=DataType
floatType ------------------------------------------------------------------------------doubleType ::DataType doubleType :: DataType
doubleType =[Char] -> DataType
mkFloatType "Prelude.Double"-- | @since 4.0.0.0instanceData DoublewheretoConstr :: Double -> Constr
toConstr =DataType -> Double -> Constr
forall a. (Real a, Show a) => DataType -> a -> Constr
mkRealConstr DataType
doubleType gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Double
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(FloatConstr x :: Rational
x )->Double -> c Double
forall r. r -> c r
z (Rational -> Double
forall a b. (Real a, Fractional b) => a -> b
realToFrac Rational
x )_->[Char] -> c Double
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Double) -> [Char] -> c Double
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Double."dataTypeOf :: Double -> DataType
dataTypeOf _=DataType
doubleType ------------------------------------------------------------------------------intType ::DataType intType :: DataType
intType =[Char] -> DataType
mkIntType "Prelude.Int"-- | @since 4.0.0.0instanceData IntwheretoConstr :: Int -> Constr
toConstr x :: Int
x =DataType -> Int -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
intType Int
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Int
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Int -> c Int
forall r. r -> c r
z (Integer -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Int
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Int) -> [Char] -> c Int
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Int."dataTypeOf :: Int -> DataType
dataTypeOf _=DataType
intType ------------------------------------------------------------------------------integerType ::DataType integerType :: DataType
integerType =[Char] -> DataType
mkIntType "Prelude.Integer"-- | @since 4.0.0.0instanceData IntegerwheretoConstr :: Integer -> Constr
toConstr =DataType -> Integer -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
integerType gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Integer
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Integer -> c Integer
forall r. r -> c r
z Integer
x _->[Char] -> c Integer
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Integer) -> [Char] -> c Integer
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Integer."dataTypeOf :: Integer -> DataType
dataTypeOf _=DataType
integerType -------------------------------------------------------------------------------- This follows the same style as the other integral 'Data' instances-- defined in "Data.Data"naturalType ::DataType naturalType :: DataType
naturalType =[Char] -> DataType
mkIntType "Numeric.Natural.Natural"-- | @since 4.8.0.0instanceData Natural wheretoConstr :: Natural -> Constr
toConstr x :: Natural
x =DataType -> Natural -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
naturalType Natural
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Natural
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Natural -> c Natural
forall r. r -> c r
z (Integer -> Natural
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Natural
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Natural) -> [Char] -> c Natural
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Natural"dataTypeOf :: Natural -> DataType
dataTypeOf _=DataType
naturalType ------------------------------------------------------------------------------int8Type ::DataType int8Type :: DataType
int8Type =[Char] -> DataType
mkIntType "Data.Int.Int8"-- | @since 4.0.0.0instanceData Int8 wheretoConstr :: Int8 -> Constr
toConstr x :: Int8
x =DataType -> Int8 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
int8Type Int8
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Int8
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Int8 -> c Int8
forall r. r -> c r
z (Integer -> Int8
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Int8
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Int8) -> [Char] -> c Int8
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Int8."dataTypeOf :: Int8 -> DataType
dataTypeOf _=DataType
int8Type ------------------------------------------------------------------------------int16Type ::DataType int16Type :: DataType
int16Type =[Char] -> DataType
mkIntType "Data.Int.Int16"-- | @since 4.0.0.0instanceData Int16 wheretoConstr :: Int16 -> Constr
toConstr x :: Int16
x =DataType -> Int16 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
int16Type Int16
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Int16
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Int16 -> c Int16
forall r. r -> c r
z (Integer -> Int16
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Int16
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Int16) -> [Char] -> c Int16
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Int16."dataTypeOf :: Int16 -> DataType
dataTypeOf _=DataType
int16Type ------------------------------------------------------------------------------int32Type ::DataType int32Type :: DataType
int32Type =[Char] -> DataType
mkIntType "Data.Int.Int32"-- | @since 4.0.0.0instanceData Int32 wheretoConstr :: Int32 -> Constr
toConstr x :: Int32
x =DataType -> Int32 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
int32Type Int32
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Int32
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Int32 -> c Int32
forall r. r -> c r
z (Integer -> Int32
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Int32
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Int32) -> [Char] -> c Int32
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Int32."dataTypeOf :: Int32 -> DataType
dataTypeOf _=DataType
int32Type ------------------------------------------------------------------------------int64Type ::DataType int64Type :: DataType
int64Type =[Char] -> DataType
mkIntType "Data.Int.Int64"-- | @since 4.0.0.0instanceData Int64 wheretoConstr :: Int64 -> Constr
toConstr x :: Int64
x =DataType -> Int64 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
int64Type Int64
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Int64
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Int64 -> c Int64
forall r. r -> c r
z (Integer -> Int64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Int64
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Int64) -> [Char] -> c Int64
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Int64."dataTypeOf :: Int64 -> DataType
dataTypeOf _=DataType
int64Type ------------------------------------------------------------------------------wordType ::DataType wordType :: DataType
wordType =[Char] -> DataType
mkIntType "Data.Word.Word"-- | @since 4.0.0.0instanceData WordwheretoConstr :: Word -> Constr
toConstr x :: Word
x =DataType -> Word -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
wordType Word
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Word -> c Word
forall r. r -> c r
z (Integer -> Word
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Word
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Word) -> [Char] -> c Word
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Word"dataTypeOf :: Word -> DataType
dataTypeOf _=DataType
wordType ------------------------------------------------------------------------------word8Type ::DataType word8Type :: DataType
word8Type =[Char] -> DataType
mkIntType "Data.Word.Word8"-- | @since 4.0.0.0instanceData Word8 wheretoConstr :: Word8 -> Constr
toConstr x :: Word8
x =DataType -> Word8 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
word8Type Word8
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word8
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Word8 -> c Word8
forall r. r -> c r
z (Integer -> Word8
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Word8
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Word8) -> [Char] -> c Word8
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Word8."dataTypeOf :: Word8 -> DataType
dataTypeOf _=DataType
word8Type ------------------------------------------------------------------------------word16Type ::DataType word16Type :: DataType
word16Type =[Char] -> DataType
mkIntType "Data.Word.Word16"-- | @since 4.0.0.0instanceData Word16 wheretoConstr :: Word16 -> Constr
toConstr x :: Word16
x =DataType -> Word16 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
word16Type Word16
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word16
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Word16 -> c Word16
forall r. r -> c r
z (Integer -> Word16
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Word16
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Word16) -> [Char] -> c Word16
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Word16."dataTypeOf :: Word16 -> DataType
dataTypeOf _=DataType
word16Type ------------------------------------------------------------------------------word32Type ::DataType word32Type :: DataType
word32Type =[Char] -> DataType
mkIntType "Data.Word.Word32"-- | @since 4.0.0.0instanceData Word32 wheretoConstr :: Word32 -> Constr
toConstr x :: Word32
x =DataType -> Word32 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
word32Type Word32
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word32
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Word32 -> c Word32
forall r. r -> c r
z (Integer -> Word32
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Word32
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Word32) -> [Char] -> c Word32
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Word32."dataTypeOf :: Word32 -> DataType
dataTypeOf _=DataType
word32Type ------------------------------------------------------------------------------word64Type ::DataType word64Type :: DataType
word64Type =[Char] -> DataType
mkIntType "Data.Word.Word64"-- | @since 4.0.0.0instanceData Word64 wheretoConstr :: Word64 -> Constr
toConstr x :: Word64
x =DataType -> Word64 -> Constr
forall a. (Integral a, Show a) => DataType -> a -> Constr
mkIntegralConstr DataType
word64Type Word64
x gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Word64
gunfold _z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> ConstrRep
constrRep Constr
c of(IntConstr x :: Integer
x )->Word64 -> c Word64
forall r. r -> c r
z (Integer -> Word64
forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
x )_->[Char] -> c Word64
forall a. [Char] -> a
errorWithoutStackTrace ([Char] -> c Word64) -> [Char] -> c Word64
forall a b. (a -> b) -> a -> b
$ "Data.Data.gunfold: Constructor "[Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ Constr -> [Char]
forall a. Show a => a -> [Char]
show Constr
c [Char] -> ShowS
forall a. [a] -> [a] -> [a]
++ " is not of type Word64."dataTypeOf :: Word64 -> DataType
dataTypeOf _=DataType
word64Type ------------------------------------------------------------------------------ratioConstr ::Constr ratioConstr :: Constr
ratioConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
ratioDataType ":%"[]Fixity
Infix ratioDataType ::DataType ratioDataType :: DataType
ratioDataType =[Char] -> [Constr] -> DataType
mkDataType "GHC.Real.Ratio"[Constr
ratioConstr ]-- NB: This Data instance intentionally uses the (%) smart constructor instead-- of the internal (:%) constructor to preserve the invariant that a Ratio-- value is reduced to normal form. See Trac #10011.-- | @since 4.0.0.0instance(Data a ,Integral a )=>Data (Ratio a )wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Ratio a -> c (Ratio a)
gfoldl k :: forall d b. Data d => c (d -> b) -> d -> c b
k z :: forall g. g -> c g
z (a :: a
a :% b :: a
b )=(a -> a -> Ratio a) -> c (a -> a -> Ratio a)
forall g. g -> c g
z a -> a -> Ratio a
forall a. Integral a => a -> a -> Ratio a
(%) c (a -> a -> Ratio a) -> a -> c (a -> Ratio a)
forall d b. Data d => c (d -> b) -> d -> c b
`k` a
a c (a -> Ratio a) -> a -> c (Ratio a)
forall d b. Data d => c (d -> b) -> d -> c b
`k` a
b toConstr :: Ratio a -> Constr
toConstr _=Constr
ratioConstr gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Ratio a)
gunfold k :: forall b r. Data b => c (b -> r) -> c r
k z :: forall r. r -> c r
z c :: Constr
c |Constr -> Int
constrIndex Constr
c Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==1=c (a -> Ratio a) -> c (Ratio a)
forall b r. Data b => c (b -> r) -> c r
k (c (a -> a -> Ratio a) -> c (a -> Ratio a)
forall b r. Data b => c (b -> r) -> c r
k ((a -> a -> Ratio a) -> c (a -> a -> Ratio a)
forall r. r -> c r
z a -> a -> Ratio a
forall a. Integral a => a -> a -> Ratio a
(%) ))gunfold ___=[Char] -> c (Ratio a)
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.gunfold(Ratio)"dataTypeOf :: Ratio a -> DataType
dataTypeOf _=DataType
ratioDataType ------------------------------------------------------------------------------nilConstr ::Constr nilConstr :: Constr
nilConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
listDataType "[]"[]Fixity
Prefix consConstr ::Constr consConstr :: Constr
consConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
listDataType "(:)"[]Fixity
Infix listDataType ::DataType listDataType :: DataType
listDataType =[Char] -> [Constr] -> DataType
mkDataType "Prelude.[]"[Constr
nilConstr ,Constr
consConstr ]-- | @since 4.0.0.0instanceData a =>Data [a ]wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> [a] -> c [a]
gfoldl _z :: forall g. g -> c g
z []=[a] -> c [a]
forall g. g -> c g
z []gfoldl f :: forall d b. Data d => c (d -> b) -> d -> c b
f z :: forall g. g -> c g
z (x :: a
x :xs :: [a]
xs )=(a -> [a] -> [a]) -> c (a -> [a] -> [a])
forall g. g -> c g
z (:)c (a -> [a] -> [a]) -> a -> c ([a] -> [a])
forall d b. Data d => c (d -> b) -> d -> c b
`f` a
x c ([a] -> [a]) -> [a] -> c [a]
forall d b. Data d => c (d -> b) -> d -> c b
`f` [a]
xs toConstr :: [a] -> Constr
toConstr []=Constr
nilConstr toConstr (_:_)=Constr
consConstr gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c [a]
gunfold k :: forall b r. Data b => c (b -> r) -> c r
k z :: forall r. r -> c r
z c :: Constr
c =caseConstr -> Int
constrIndex Constr
c of1->[a] -> c [a]
forall r. r -> c r
z []2->c ([a] -> [a]) -> c [a]
forall b r. Data b => c (b -> r) -> c r
k (c (a -> [a] -> [a]) -> c ([a] -> [a])
forall b r. Data b => c (b -> r) -> c r
k ((a -> [a] -> [a]) -> c (a -> [a] -> [a])
forall r. r -> c r
z (:)))_->[Char] -> c [a]
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.gunfold(List)"dataTypeOf :: [a] -> DataType
dataTypeOf _=DataType
listDataType dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c [a])
dataCast1 f :: forall d. Data d => c (t d)
f =c (t a) -> Maybe (c [a])
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
 (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f ---- The gmaps are given as an illustration.-- This shows that the gmaps for lists are different from list maps.--gmapT :: (forall b. Data b => b -> b) -> [a] -> [a]
gmapT _[]=[]gmapT f :: forall b. Data b => b -> b
f (x :: a
x :xs :: [a]
xs )=(a -> a
forall b. Data b => b -> b
f a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a] -> [a]
forall b. Data b => b -> b
f [a]
xs )gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u]
gmapQ _[]=[]gmapQ f :: forall d. Data d => d -> u
f (x :: a
x :xs :: [a]
xs )=[a -> u
forall d. Data d => d -> u
f a
x ,[a] -> u
forall d. Data d => d -> u
f [a]
xs ]gmapM :: (forall d. Data d => d -> m d) -> [a] -> m [a]
gmapM _[]=[a] -> m [a]
forall (m :: * -> *) a. Monad m => a -> m a
return []gmapM f :: forall d. Data d => d -> m d
f (x :: a
x :xs :: [a]
xs )=a -> m a
forall d. Data d => d -> m d
f a
x m a -> (a -> m [a]) -> m [a]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \x' :: a
x' ->[a] -> m [a]
forall d. Data d => d -> m d
f [a]
xs m [a] -> ([a] -> m [a]) -> m [a]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \xs' :: [a]
xs' ->[a] -> m [a]
forall (m :: * -> *) a. Monad m => a -> m a
return (a
x' a -> [a] -> [a]
forall a. a -> [a] -> [a]
:[a]
xs' )-------------------------------------------------------------------------------- | @since 4.9.0.0derivinginstanceData a =>Data (NonEmpty a )-- | @since 4.0.0.0derivinginstanceData a =>Data (Maybe a )-- | @since 4.0.0.0derivinginstanceData Ordering-- | @since 4.0.0.0derivinginstance(Data a ,Data b )=>Data (Either a b )-- | @since 4.0.0.0derivinginstanceData ()-- | @since 4.0.0.0derivinginstance(Data a ,Data b )=>Data (a ,b )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c )=>Data (a ,b ,c )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d )=>Data (a ,b ,c ,d )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e )=>Data (a ,b ,c ,d ,e )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e ,Data f )=>Data (a ,b ,c ,d ,e ,f )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e ,Data f ,Data g )=>Data (a ,b ,c ,d ,e ,f ,g )-------------------------------------------------------------------------------- | @since 4.8.0.0instanceData a =>Data (Ptr a )wheretoConstr :: Ptr a -> Constr
toConstr _=[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.toConstr(Ptr)"gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Ptr a)
gunfold __=[Char] -> Constr -> c (Ptr a)
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.gunfold(Ptr)"dataTypeOf :: Ptr a -> DataType
dataTypeOf _=[Char] -> DataType
mkNoRepType "GHC.Ptr.Ptr"dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (Ptr a))
dataCast1 x :: forall d. Data d => c (t d)
x =c (t a) -> Maybe (c (Ptr a))
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
 (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
x -------------------------------------------------------------------------------- | @since 4.8.0.0instanceData a =>Data (ForeignPtr a )wheretoConstr :: ForeignPtr a -> Constr
toConstr _=[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.toConstr(ForeignPtr)"gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (ForeignPtr a)
gunfold __=[Char] -> Constr -> c (ForeignPtr a)
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.gunfold(ForeignPtr)"dataTypeOf :: ForeignPtr a -> DataType
dataTypeOf _=[Char] -> DataType
mkNoRepType "GHC.ForeignPtr.ForeignPtr"dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a))
dataCast1 x :: forall d. Data d => c (t d)
x =c (t a) -> Maybe (c (ForeignPtr a))
forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
 (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
x -- | @since 4.11.0.0derivinginstanceData IntPtr -- | @since 4.11.0.0derivinginstanceData WordPtr -------------------------------------------------------------------------------- The Data instance for Array preserves data abstraction at the cost of-- inefficiency. We omit reflection services for the sake of data abstraction.-- | @since 4.8.0.0instance(Data a ,Data b ,Ix a )=>Data (Array a b )wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Array a b -> c (Array a b)
gfoldl f :: forall d b. Data d => c (d -> b) -> d -> c b
f z :: forall g. g -> c g
z a :: Array a b
a =([b] -> Array a b) -> c ([b] -> Array a b)
forall g. g -> c g
z ((a, a) -> [b] -> Array a b
forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Array a b -> (a, a)
forall i e. Array i e -> (i, i)
bounds Array a b
a ))c ([b] -> Array a b) -> [b] -> c (Array a b)
forall d b. Data d => c (d -> b) -> d -> c b
`f` (Array a b -> [b]
forall i e. Array i e -> [e]
elems Array a b
a )toConstr :: Array a b -> Constr
toConstr _=[Char] -> Constr
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.toConstr(Array)"gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (Array a b)
gunfold __=[Char] -> Constr -> c (Array a b)
forall a. [Char] -> a
errorWithoutStackTrace "Data.Data.gunfold(Array)"dataTypeOf :: Array a b -> DataType
dataTypeOf _=[Char] -> DataType
mkNoRepType "Data.Array.Array"dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (Array a b))
dataCast2 x :: forall d e. (Data d, Data e) => c (t d e)
x =c (t a b) -> Maybe (c (Array a b))
forall k1 k2 k3 (c :: k1 -> *) (t :: k2 -> k3 -> k1)
 (t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3).
(Typeable t, Typeable t') =>
c (t a b) -> Maybe (c (t' a b))
gcast2 c (t a b)
forall d e. (Data d, Data e) => c (t d e)
x ------------------------------------------------------------------------------ Data instance for Proxy-- | @since 4.7.0.0derivinginstance(Data t )=>Data (Proxy t )-- | @since 4.7.0.0derivinginstance(a ~b ,Data a )=>Data (a :~: b )-- | @since 4.10.0.0derivinginstance(Typeable i ,Typeable j ,Typeable a ,Typeable b ,(a ::i )~~(b ::j ))=>Data (a :~~: b )-- | @since 4.7.0.0derivinginstance(Coerciblea b ,Data a ,Data b )=>Data (Coercion a b )-- | @since 4.9.0.0derivinginstanceData a =>Data (Identity a )-- | @since 4.10.0.0derivinginstance(Typeable k ,Data a ,Typeable (b ::k ))=>Data (Const a b )-- | @since 4.7.0.0derivinginstanceData Version ------------------------------------------------------------------------------ Data instances for Data.Monoid wrappers-- | @since 4.8.0.0derivinginstanceData a =>Data (Dual a )-- | @since 4.8.0.0derivinginstanceData All -- | @since 4.8.0.0derivinginstanceData Any -- | @since 4.8.0.0derivinginstanceData a =>Data (Sum a )-- | @since 4.8.0.0derivinginstanceData a =>Data (Product a )-- | @since 4.8.0.0derivinginstanceData a =>Data (First a )-- | @since 4.8.0.0derivinginstanceData a =>Data (Last a )-- | @since 4.8.0.0derivinginstance(Data (f a ),Data a ,Typeable f )=>Data (Alt f a )-- | @since 4.12.0.0derivinginstance(Data (f a ),Data a ,Typeable f )=>Data (Ap f a )------------------------------------------------------------------------------ Data instances for GHC.Generics representations-- | @since 4.9.0.0derivinginstanceData p =>Data (U1 p )-- | @since 4.9.0.0derivinginstanceData p =>Data (Par1 p )-- | @since 4.9.0.0derivinginstance(Data (f p ),Typeable f ,Data p )=>Data (Rec1 f p )-- | @since 4.9.0.0derivinginstance(Typeable i ,Data p ,Data c )=>Data (K1 i c p )-- | @since 4.9.0.0derivinginstance(Data p ,Data (f p ),Typeable c ,Typeable i ,Typeable f )=>Data (M1 i c f p )-- | @since 4.9.0.0derivinginstance(Typeable f ,Typeable g ,Data p ,Data (f p ),Data (g p ))=>Data ((f :+: g )p )-- | @since 4.9.0.0derivinginstance(Typeable (f ::Type->Type),Typeable (g ::Type->Type),Data p ,Data (f (g p )))=>Data ((f :.: g )p )-- | @since 4.9.0.0derivinginstanceData p =>Data (V1 p )-- | @since 4.9.0.0derivinginstance(Typeable f ,Typeable g ,Data p ,Data (f p ),Data (g p ))=>Data ((f :*: g )p )-- | @since 4.9.0.0derivinginstanceData Generics.Fixity -- | @since 4.9.0.0derivinginstanceData Associativity -- | @since 4.9.0.0derivinginstanceData SourceUnpackedness -- | @since 4.9.0.0derivinginstanceData SourceStrictness -- | @since 4.9.0.0derivinginstanceData DecidedStrictness ------------------------------------------------------------------------------ Data instances for Data.Ord-- | @since 4.12.0.0derivinginstanceData a =>Data (Down a )

AltStyle によって変換されたページ (->オリジナル) /