{-# LANGUAGE BangPatterns #-}{-# LANGUAGE DeriveDataTypeable #-}{-# LANGUAGE FlexibleContexts #-}{-# LANGUAGE FlexibleInstances #-}{-# LANGUAGE GADTs #-}{-# LANGUAGE NoImplicitPrelude #-}{-# LANGUAGE DataKinds #-}{-# LANGUAGE PolyKinds #-}{-# LANGUAGE RankNTypes #-}{-# LANGUAGE ScopedTypeVariables #-}{-# LANGUAGE StandaloneDeriving #-}{-# LANGUAGE Trustworthy #-}{-# LANGUAGE TypeOperators #-}------------------------------------------------------------------------------- |-- Module : Data.Data-- Copyright : (c) The University of Glasgow, CWI 2001--2004-- License : BSD-style (see the file libraries/base/LICENSE)---- Maintainer : libraries@haskell.org-- Stability : experimental-- Portability : non-portable (local universal quantification)---- \"Scrap your boilerplate\" --- Generic programming in Haskell. See-- <http://www.haskell.org/haskellwiki/Research_papers/Generics#Scrap_your_boilerplate.21>.-- This module provides the 'Data' class with its primitives for-- generic programming, along with instances for many datatypes. It-- corresponds to a merge between the previous "Data.Generics.Basics"-- and almost all of "Data.Generics.Instances". The instances that are-- not present in this module were moved to the-- @Data.Generics.Instances@ module in the @syb@ package.---- For more information, please visit the new-- SYB wiki: <http://www.cs.uu.nl/wiki/bin/view/GenericProgramming/SYB>.-------------------------------------------------------------------------------moduleData.Data(-- * Module Data.Typeable re-exported for conveniencemoduleData.Typeable ,-- * The Data class for processing constructor applicationsData (gfoldl ,gunfold ,toConstr ,dataTypeOf ,dataCast1 ,-- mediate types and unary type constructorsdataCast2 ,-- mediate types and binary type constructors-- Generic maps defined in terms of gfoldlgmapT ,gmapQ ,gmapQl ,gmapQr ,gmapQi ,gmapM ,gmapMp ,gmapMo ),-- * Datatype representationsDataType ,-- abstract-- ** ConstructorsmkDataType ,mkIntType ,mkFloatType ,mkCharType ,mkNoRepType ,-- ** ObserversdataTypeName ,DataRep (..),dataTypeRep ,-- ** Convenience functionsrepConstr ,isAlgType ,dataTypeConstrs ,indexConstr ,maxConstrIndex ,isNorepType ,-- * Data constructor representationsConstr ,-- abstractConIndex ,-- alias for Int, start at 1Fixity (..),-- ** ConstructorsmkConstr ,mkIntegralConstr ,mkRealConstr ,mkCharConstr ,-- ** ObserversconstrType ,ConstrRep (..),constrRep ,constrFields ,constrFixity ,-- ** Convenience function: algebraic data typesconstrIndex ,-- ** From strings to constructors and vice versa: all data typesshowConstr ,readConstr ,-- * Convenience functions: take type constructors aparttyconUQname ,tyconModule ,-- * Generic operations defined in terms of 'gunfold'fromConstr ,fromConstrB ,fromConstrM )where------------------------------------------------------------------------------importData.Functor.Const importData.Either importData.Eq importData.Maybe importData.Monoid importData.Ord importData.Typeable importData.Version (Version (..))importGHC.Base hiding(Any,IntRep,FloatRep)importGHC.List importGHC.Num importGHC.Read importGHC.Show importText.Read (reads )-- Imports for the instancesimportData.Functor.Identity -- So we can give Data instance for IdentityimportData.Int -- So we can give Data instance for Int8, ...importData.Type.Coercion importData.Word -- So we can give Data instance for Word8, ...importGHC.Real -- So we can give Data instance for Ratio--import GHC.IOBase -- So we can give Data instance for IO, HandleimportGHC.Ptr -- So we can give Data instance for PtrimportGHC.ForeignPtr -- So we can give Data instance for ForeignPtrimportForeign.Ptr (IntPtr (..),WordPtr (..))-- So we can give Data instance for IntPtr and WordPtr--import GHC.Stable -- So we can give Data instance for StablePtr--import GHC.ST -- So we can give Data instance for ST--import GHC.Conc -- So we can give Data instance for MVar & Co.importGHC.Arr -- So we can give Data instance for ArrayimportqualifiedGHC.Generics asGenerics(Fixity (..))importGHC.Generics hiding(Fixity (..))-- So we can give Data instance for U1, V1, ...---------------------------------------------------------------------------------- The Data class--------------------------------------------------------------------------------{- | The 'Data' class comprehends a fundamental primitive 'gfoldl' for folding over constructor applications, say terms. This primitive can be instantiated in several ways to map over the immediate subterms of a term; see the @gmap@ combinators later in this class. Indeed, a generic programmer does not necessarily need to use the ingenious gfoldl primitive but rather the intuitive @gmap@ combinators. The 'gfoldl' primitive is completed by means to query top-level constructors, to turn constructor representations into proper terms, and to list all possible datatype constructors. This completion allows us to serve generic programming scenarios like read, show, equality, term generation. The combinators 'gmapT', 'gmapQ', 'gmapM', etc are all provided with default definitions in terms of 'gfoldl', leaving open the opportunity to provide datatype-specific definitions. (The inclusion of the @gmap@ combinators as members of class 'Data' allows the programmer or the compiler to derive specialised, and maybe more efficient code per datatype. /Note/: 'gfoldl' is more higher-order than the @gmap@ combinators. This is subject to ongoing benchmarking experiments. It might turn out that the @gmap@ combinators will be moved out of the class 'Data'.) Conceptually, the definition of the @gmap@ combinators in terms of the primitive 'gfoldl' requires the identification of the 'gfoldl' function arguments. Technically, we also need to identify the type constructor @c@ for the construction of the result type from the folded term type. In the definition of @gmapQ@/x/ combinators, we use phantom type constructors for the @c@ in the type of 'gfoldl' because the result type of a query does not involve the (polymorphic) type of the term argument. In the definition of 'gmapQl' we simply use the plain constant type constructor because 'gfoldl' is left-associative anyway and so it is readily suited to fold a left-associative binary operation over the immediate subterms. In the definition of gmapQr, extra effort is needed. We use a higher-order accumulation trick to mediate between left-associative constructor application vs. right-associative binary operation (e.g., @(:)@). When the query is meant to compute a value of type @r@, then the result type withing generic folding is @r -> r@. So the result of folding is a function to which we finally pass the right unit. With the @-XDeriveDataTypeable@ option, GHC can generate instances of the 'Data' class automatically. For example, given the declaration > data T a b = C1 a b | C2 deriving (Typeable, Data) GHC will generate an instance that is equivalent to > instance (Data a, Data b) => Data (T a b) where > gfoldl k z (C1 a b) = z C1 `k` a `k` b > gfoldl k z C2 = z C2 > > gunfold k z c = case constrIndex c of > 1 -> k (k (z C1)) > 2 -> z C2 > > toConstr (C1 _ _) = con_C1 > toConstr C2 = con_C2 > > dataTypeOf _ = ty_T > > con_C1 = mkConstr ty_T "C1" [] Prefix > con_C2 = mkConstr ty_T "C2" [] Prefix > ty_T = mkDataType "Module.T" [con_C1, con_C2] This is suitable for datatypes that are exported transparently. -}classTypeable a =>Data a where-- | Left-associative fold operation for constructor applications.---- The type of 'gfoldl' is a headache, but operationally it is a simple-- generalisation of a list fold.---- The default definition for 'gfoldl' is @'const' 'id'@, which is-- suitable for abstract datatypes with no substructures.gfoldl ::(foralld b .Data d =>c (d ->b )->d ->c b )-- ^ defines how nonempty constructor applications are-- folded. It takes the folded tail of the constructor-- application and its head, i.e., an immediate subterm,-- and combines them in some way.->(forallg .g ->c g )-- ^ defines how the empty constructor application is-- folded, like the neutral \/ start element for list-- folding.->a -- ^ structure to be folded.->c a -- ^ result, with a type defined in terms of @a@, but-- variability is achieved by means of type constructor-- @c@ for the construction of the actual result type.-- See the 'Data' instances in this file for an illustration of 'gfoldl'.gfoldl _z :: forall g. g -> c g z =a -> c a forall g. g -> c g z -- | Unfolding constructor applicationsgunfold ::(forallb r .Data b =>c (b ->r )->c r )->(forallr .r ->c r )->Constr ->c a -- | Obtaining the constructor from a given datum.-- For proper terms, this is meant to be the top-level constructor.-- Primitive datatypes are here viewed as potentially infinite sets of-- values (i.e., constructors).toConstr ::a ->Constr -- | The outer type constructor of the typedataTypeOf ::a ->DataType ---------------------------------------------------------------------------------- Mediate types and type constructors---------------------------------------------------------------------------------- | Mediate types and unary type constructors.---- In 'Data' instances of the form---- @-- instance (Data a, ...) => Data (T a)-- @---- 'dataCast1' should be defined as 'gcast1'.---- The default definition is @'const' 'Nothing'@, which is appropriate-- for instances of other forms.dataCast1 ::Typeable t =>(foralld .Data d =>c (t d ))->Maybe (c a )dataCast1 _=Maybe (c a) forall a. Maybe a Nothing -- | Mediate types and binary type constructors.---- In 'Data' instances of the form---- @-- instance (Data a, Data b, ...) => Data (T a b)-- @---- 'dataCast2' should be defined as 'gcast2'.---- The default definition is @'const' 'Nothing'@, which is appropriate-- for instances of other forms.dataCast2 ::Typeable t =>(foralld e .(Data d ,Data e )=>c (t d e ))->Maybe (c a )dataCast2 _=Maybe (c a) forall a. Maybe a Nothing ---------------------------------------------------------------------------------- Typical generic maps defined in terms of gfoldl---------------------------------------------------------------------------------- | A generic transformation that maps over the immediate subterms---- The default definition instantiates the type constructor @c@ in the-- type of 'gfoldl' to an identity datatype constructor, using the-- isomorphism pair as injection and projection.gmapT ::(forallb .Data b =>b ->b )->a ->a -- Use the Identity datatype constructor-- to instantiate the type constructor c in the type of gfoldl,-- and perform injections Identity and projections runIdentity accordingly.--gmapT f :: forall b. Data b => b -> b f x0 :: a x0 =Identity a -> a forall a. Identity a -> a runIdentity ((forall d b. Data d => Identity (d -> b) -> d -> Identity b) -> (forall g. g -> Identity g) -> a -> Identity a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Identity (d -> b) -> d -> Identity b k forall g. g -> Identity g Identity a x0 )wherek ::Data d =>Identity (d ->b )->d ->Identity b k :: Identity (d -> b) -> d -> Identity b k (Identity c :: d -> b c )x :: d x =b -> Identity b forall g. g -> Identity g Identity (d -> b c (d -> d forall b. Data b => b -> b f d x ))-- | A generic query with a left-associative binary operatorgmapQl ::forallr r' .(r ->r' ->r )->r ->(foralld .Data d =>d ->r' )->a ->r gmapQl o :: r -> r' -> r o r :: r r f :: forall d. Data d => d -> r' f =Const r a -> r forall a k (b :: k). Const a b -> a getConst (Const r a -> r) -> (a -> Const r a) -> a -> r forall b c a. (b -> c) -> (a -> b) -> a -> c . (forall d b. Data d => Const r (d -> b) -> d -> Const r b) -> (forall g. g -> Const r g) -> a -> Const r a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Const r (d -> b) -> d -> Const r b k forall g. g -> Const r g z wherek ::Data d =>Const r (d ->b )->d ->Const r b k :: Const r (d -> b) -> d -> Const r b k c :: Const r (d -> b) c x :: d x =r -> Const r b forall k a (b :: k). a -> Const a b Const (r -> Const r b) -> r -> Const r b forall a b. (a -> b) -> a -> b $ (Const r (d -> b) -> r forall a k (b :: k). Const a b -> a getConst Const r (d -> b) c )r -> r' -> r `o` d -> r' forall d. Data d => d -> r' f d x z ::g ->Const r g z :: g -> Const r g z _=r -> Const r g forall k a (b :: k). a -> Const a b Const r r -- | A generic query with a right-associative binary operatorgmapQr ::forallr r' .(r' ->r ->r )->r ->(foralld .Data d =>d ->r' )->a ->r gmapQr o :: r' -> r -> r o r0 :: r r0 f :: forall d. Data d => d -> r' f x0 :: a x0 =Qr r a -> r -> r forall r k (a :: k). Qr r a -> r -> r unQr ((forall d b. Data d => Qr r (d -> b) -> d -> Qr r b) -> (forall g. g -> Qr r g) -> a -> Qr r a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Qr r (d -> b) -> d -> Qr r b k (Qr r g -> g -> Qr r g forall a b. a -> b -> a const ((r -> r) -> Qr r g forall k r (a :: k). (r -> r) -> Qr r a Qr r -> r forall a. a -> a id ))a x0 )r r0 wherek ::Data d =>Qr r (d ->b )->d ->Qr r b k :: Qr r (d -> b) -> d -> Qr r b k (Qr c :: r -> r c )x :: d x =(r -> r) -> Qr r b forall k r (a :: k). (r -> r) -> Qr r a Qr (\r :: r r ->r -> r c (d -> r' forall d. Data d => d -> r' f d x r' -> r -> r `o` r r ))-- | A generic query that processes the immediate subterms and returns a list-- of results. The list is given in the same order as originally specified-- in the declaration of the data constructors.gmapQ ::(foralld .Data d =>d ->u )->a ->[u ]gmapQ f :: forall d. Data d => d -> u f =(u -> [u] -> [u]) -> [u] -> (forall d. Data d => d -> u) -> a -> [u] forall a r r'. Data a => (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r gmapQr (:)[]forall d. Data d => d -> u f -- | A generic query that processes one child by index (zero-based)gmapQi ::forallu .Int->(foralld .Data d =>d ->u )->a ->u gmapQi i :: Int i f :: forall d. Data d => d -> u f x :: a x =case(forall d b. Data d => Qi u (d -> b) -> d -> Qi u b) -> (forall g. g -> Qi u g) -> a -> Qi u a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Qi u (d -> b) -> d -> Qi u b k forall g. g -> Qi u g forall g q. g -> Qi q g z a x of{Qi _q :: Maybe u q ->Maybe u -> u forall a. HasCallStack => Maybe a -> a fromJust Maybe u q }wherek ::Data d =>Qi u (d ->b )->d ->Qi u b k :: Qi u (d -> b) -> d -> Qi u b k (Qi i' :: Int i' q :: Maybe u q )a :: d a =Int -> Maybe u -> Qi u b forall k q (a :: k). Int -> Maybe q -> Qi q a Qi (Int i' Int -> Int -> Int forall a. Num a => a -> a -> a + 1)(ifInt i Int -> Int -> Bool forall a. Eq a => a -> a -> Bool ==Int i' thenu -> Maybe u forall a. a -> Maybe a Just (d -> u forall d. Data d => d -> u f d a )elseMaybe u q )z ::g ->Qi q g z :: g -> Qi q g z _=Int -> Maybe q -> Qi q g forall k q (a :: k). Int -> Maybe q -> Qi q a Qi 0Maybe q forall a. Maybe a Nothing -- | A generic monadic transformation that maps over the immediate subterms---- The default definition instantiates the type constructor @c@ in-- the type of 'gfoldl' to the monad datatype constructor, defining-- injection and projection using 'return' and '>>='.gmapM ::forallm .Monad m =>(foralld .Data d =>d ->m d )->a ->m a -- Use immediately the monad datatype constructor-- to instantiate the type constructor c in the type of gfoldl,-- so injection and projection is done by return and >>=.--gmapM f :: forall d. Data d => d -> m d f =(forall d b. Data d => m (d -> b) -> d -> m b) -> (forall g. g -> m g) -> a -> m a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => m (d -> b) -> d -> m b k forall g. g -> m g forall (m :: * -> *) a. Monad m => a -> m a return wherek ::Data d =>m (d ->b )->d ->m b k :: m (d -> b) -> d -> m b k c :: m (d -> b) c x :: d x =dod -> b c' <-m (d -> b) c d x' <-d -> m d forall d. Data d => d -> m d f d x b -> m b forall (m :: * -> *) a. Monad m => a -> m a return (d -> b c' d x' )-- | Transformation of at least one immediate subterm does not failgmapMp ::forallm .MonadPlus m =>(foralld .Data d =>d ->m d )->a ->m a {- The type constructor that we use here simply keeps track of the fact if we already succeeded for an immediate subterm; see Mp below. To this end, we couple the monadic computation with a Boolean. -}gmapMp f :: forall d. Data d => d -> m d f x :: a x =Mp m a -> m (a, Bool) forall (m :: * -> *) x. Mp m x -> m (x, Bool) unMp ((forall d b. Data d => Mp m (d -> b) -> d -> Mp m b) -> (forall g. g -> Mp m g) -> a -> Mp m a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Mp m (d -> b) -> d -> Mp m b k forall g. g -> Mp m g z a x )m (a, Bool) -> ((a, Bool) -> m a) -> m a forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \(x' :: a x' ,b :: Bool b )->ifBool b thena -> m a forall (m :: * -> *) a. Monad m => a -> m a return a x' elsem a forall (m :: * -> *) a. MonadPlus m => m a mzero wherez ::g ->Mp m g z :: g -> Mp m g z g :: g g =m (g, Bool) -> Mp m g forall (m :: * -> *) x. m (x, Bool) -> Mp m x Mp ((g, Bool) -> m (g, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (g g ,Bool False))k ::Data d =>Mp m (d ->b )->d ->Mp m b k :: Mp m (d -> b) -> d -> Mp m b k (Mp c :: m (d -> b, Bool) c )y :: d y =m (b, Bool) -> Mp m b forall (m :: * -> *) x. m (x, Bool) -> Mp m x Mp (m (d -> b, Bool) c m (d -> b, Bool) -> ((d -> b, Bool) -> m (b, Bool)) -> m (b, Bool) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \(h :: d -> b h ,b :: Bool b )->(d -> m d forall d. Data d => d -> m d f d y m d -> (d -> m (b, Bool)) -> m (b, Bool) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \y' :: d y' ->(b, Bool) -> m (b, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (d -> b h d y' ,Bool True))m (b, Bool) -> m (b, Bool) -> m (b, Bool) forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a `mplus` (b, Bool) -> m (b, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (d -> b h d y ,Bool b ))-- | Transformation of one immediate subterm with successgmapMo ::forallm .MonadPlus m =>(foralld .Data d =>d ->m d )->a ->m a {- We use the same pairing trick as for gmapMp, i.e., we use an extra Bool component to keep track of the fact whether an immediate subterm was processed successfully. However, we cut of mapping over subterms once a first subterm was transformed successfully. -}gmapMo f :: forall d. Data d => d -> m d f x :: a x =Mp m a -> m (a, Bool) forall (m :: * -> *) x. Mp m x -> m (x, Bool) unMp ((forall d b. Data d => Mp m (d -> b) -> d -> Mp m b) -> (forall g. g -> Mp m g) -> a -> Mp m a forall a (c :: * -> *). Data a => (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> a -> c a gfoldl forall d b. Data d => Mp m (d -> b) -> d -> Mp m b k forall g. g -> Mp m g z a x )m (a, Bool) -> ((a, Bool) -> m a) -> m a forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \(x' :: a x' ,b :: Bool b )->ifBool b thena -> m a forall (m :: * -> *) a. Monad m => a -> m a return a x' elsem a forall (m :: * -> *) a. MonadPlus m => m a mzero wherez ::g ->Mp m g z :: g -> Mp m g z g :: g g =m (g, Bool) -> Mp m g forall (m :: * -> *) x. m (x, Bool) -> Mp m x Mp ((g, Bool) -> m (g, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (g g ,Bool False))k ::Data d =>Mp m (d ->b )->d ->Mp m b k :: Mp m (d -> b) -> d -> Mp m b k (Mp c :: m (d -> b, Bool) c )y :: d y =m (b, Bool) -> Mp m b forall (m :: * -> *) x. m (x, Bool) -> Mp m x Mp (m (d -> b, Bool) c m (d -> b, Bool) -> ((d -> b, Bool) -> m (b, Bool)) -> m (b, Bool) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \(h :: d -> b h ,b :: Bool b )->ifBool b then(b, Bool) -> m (b, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (d -> b h d y ,Bool b )else(d -> m d forall d. Data d => d -> m d f d y m d -> (d -> m (b, Bool)) -> m (b, Bool) forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \y' :: d y' ->(b, Bool) -> m (b, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (d -> b h d y' ,Bool True))m (b, Bool) -> m (b, Bool) -> m (b, Bool) forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a `mplus` (b, Bool) -> m (b, Bool) forall (m :: * -> *) a. Monad m => a -> m a return (d -> b h d y ,Bool b ))-- | Type constructor for adding counters to queriesdataQi q a =Qi Int(Maybe q )-- | The type constructor used in definition of gmapQrnewtypeQr r a =Qr {Qr r a -> r -> r unQr ::r ->r }-- | The type constructor used in definition of gmapMpnewtypeMp m x =Mp {Mp m x -> m (x, Bool) unMp ::m (x ,Bool)}---------------------------------------------------------------------------------- Generic unfolding---------------------------------------------------------------------------------- | Build a term skeletonfromConstr ::Data a =>Constr ->a fromConstr :: Constr -> a fromConstr =(forall d. Data d => d) -> Constr -> a forall a. Data a => (forall d. Data d => d) -> Constr -> a fromConstrB ([Char] -> d forall a. [Char] -> a errorWithoutStackTrace "Data.Data.fromConstr")-- | Build a term and use a generic function for subtermsfromConstrB ::Data a =>(foralld .Data d =>d )->Constr ->a fromConstrB :: (forall d. Data d => d) -> Constr -> a fromConstrB f :: forall d. Data d => d f =Identity a -> a forall a. Identity a -> a runIdentity (Identity a -> a) -> (Constr -> Identity a) -> Constr -> a forall b c a. (b -> c) -> (a -> b) -> a -> c . (forall b r. Data b => Identity (b -> r) -> Identity r) -> (forall g. g -> Identity g) -> Constr -> Identity a forall a (c :: * -> *). Data a => (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a gunfold forall b r. Data b => Identity (b -> r) -> Identity r k forall g. g -> Identity g z wherek ::forallb r .Data b =>Identity (b ->r )->Identity r k :: Identity (b -> r) -> Identity r k c :: Identity (b -> r) c =r -> Identity r forall g. g -> Identity g Identity (Identity (b -> r) -> b -> r forall a. Identity a -> a runIdentity Identity (b -> r) c b forall d. Data d => d f )z ::forallr .r ->Identity r z :: r -> Identity r z =r -> Identity r forall g. g -> Identity g Identity -- | Monadic variation on 'fromConstrB'fromConstrM ::forallm a .(Monad m ,Data a )=>(foralld .Data d =>m d )->Constr ->m a fromConstrM :: (forall d. Data d => m d) -> Constr -> m a fromConstrM f :: forall d. Data d => m d f =(forall b r. Data b => m (b -> r) -> m r) -> (forall r. r -> m r) -> Constr -> m a forall a (c :: * -> *). Data a => (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c a gunfold forall b r. Data b => m (b -> r) -> m r k forall r. r -> m r z wherek ::forallb r .Data b =>m (b ->r )->m r k :: m (b -> r) -> m r k c :: m (b -> r) c =do{b -> r c' <-m (b -> r) c ;b b <-m b forall d. Data d => m d f ;r -> m r forall (m :: * -> *) a. Monad m => a -> m a return (b -> r c' b b )}z ::forallr .r ->m r z :: r -> m r z =r -> m r forall (m :: * -> *) a. Monad m => a -> m a return ---------------------------------------------------------------------------------- Datatype and constructor representations------------------------------------------------------------------------------------ | Representation of datatypes.-- A package of constructor representations with names of type and module.--dataDataType =DataType {DataType -> [Char] tycon ::String ,DataType -> DataRep datarep ::DataRep }derivingShow -- ^ @since 4.0.0.0-- | Representation of constructors. Note that equality on constructors-- with different types may not work -- i.e. the constructors for 'False' and-- 'Nothing' may compare equal.dataConstr =Constr {Constr -> ConstrRep conrep ::ConstrRep ,Constr -> [Char] constring ::String ,Constr -> [[Char]] confields ::[String ]-- for AlgRep only,Constr -> Fixity confixity ::Fixity -- for AlgRep only,Constr -> DataType datatype ::DataType }-- | @since 4.0.0.0instanceShow Constr whereshow :: Constr -> [Char] show =Constr -> [Char] constring -- | Equality of constructors---- @since 4.0.0.0instanceEqConstr wherec :: Constr c == :: Constr -> Constr -> Bool ==c' :: Constr c' =Constr -> ConstrRep constrRep Constr c ConstrRep -> ConstrRep -> Bool forall a. Eq a => a -> a -> Bool ==Constr -> ConstrRep constrRep Constr c' -- | Public representation of datatypesdataDataRep =AlgRep [Constr ]|IntRep |FloatRep |CharRep |NoRep deriving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)-- The list of constructors could be an array, a balanced tree, or others.-- | Public representation of constructorsdataConstrRep =AlgConstr ConIndex |IntConstr Integer|FloatConstr Rational |CharConstr Charderiving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)-- | Unique index for datatype constructors,-- counting from 1 in the order they are given in the program text.typeConIndex =Int-- | Fixity of constructorsdataFixity =Prefix |Infix -- Later: add associativity and precedencederiving(Eq-- ^ @since 4.0.0.0,Show -- ^ @since 4.0.0.0)---------------------------------------------------------------------------------- Observers for datatype representations---------------------------------------------------------------------------------- | Gets the type constructor including the moduledataTypeName ::DataType ->String dataTypeName :: DataType -> [Char] dataTypeName =DataType -> [Char] tycon -- | Gets the public presentation of a datatypedataTypeRep ::DataType ->DataRep dataTypeRep :: DataType -> DataRep dataTypeRep =DataType -> DataRep datarep -- | Gets the datatype of a constructorconstrType ::Constr ->DataType constrType :: Constr -> DataType constrType =Constr -> DataType datatype -- | Gets the public presentation of constructorsconstrRep ::Constr ->ConstrRep constrRep :: Constr -> ConstrRep constrRep =Constr -> ConstrRep conrep -- | Look up a constructor by its representationrepConstr ::DataType ->ConstrRep ->Constr repConstr :: DataType -> ConstrRep -> Constr repConstr dt :: DataType dt cr :: ConstrRep cr =case(DataType -> DataRep dataTypeRep DataType dt ,ConstrRep cr )of(AlgRep cs :: [Constr] cs ,AlgConstr i :: Int i )->[Constr] cs [Constr] -> Int -> Constr forall a. [a] -> Int -> a !! (Int i Int -> Int -> Int forall a. Num a => a -> a -> a - 1)(IntRep ,IntConstr i :: Integer i )->DataType -> Integer -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType dt Integer i (FloatRep ,FloatConstr f :: Rational f )->DataType -> Rational -> Constr forall a. (Real a, Show a) => DataType -> a -> Constr mkRealConstr DataType dt Rational f (CharRep ,CharConstr c :: Char c )->DataType -> Char -> Constr mkCharConstr DataType dt Char c _->[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace "Data.Data.repConstr: The given ConstrRep does not fit to the given DataType."---------------------------------------------------------------------------------- Representations of algebraic data types---------------------------------------------------------------------------------- | Constructs an algebraic datatypemkDataType ::String ->[Constr ]->DataType mkDataType :: [Char] -> [Constr] -> DataType mkDataType str :: [Char] str cs :: [Constr] cs =DataType :: [Char] -> DataRep -> DataType DataType {tycon :: [Char] tycon =[Char] str ,datarep :: DataRep datarep =[Constr] -> DataRep AlgRep [Constr] cs }-- | Constructs a constructormkConstr ::DataType ->String ->[String ]->Fixity ->Constr mkConstr :: DataType -> [Char] -> [[Char]] -> Fixity -> Constr mkConstr dt :: DataType dt str :: [Char] str fields :: [[Char]] fields fix :: Fixity fix =Constr :: ConstrRep -> [Char] -> [[Char]] -> Fixity -> DataType -> Constr Constr {conrep :: ConstrRep conrep =Int -> ConstrRep AlgConstr Int idx ,constring :: [Char] constring =[Char] str ,confields :: [[Char]] confields =[[Char]] fields ,confixity :: Fixity confixity =Fixity fix ,datatype :: DataType datatype =DataType dt }whereidx :: Int idx =[Int] -> Int forall a. [a] -> a head [Int i |(c :: Constr c ,i :: Int i )<-DataType -> [Constr] dataTypeConstrs DataType dt [Constr] -> [Int] -> [(Constr, Int)] forall a b. [a] -> [b] -> [(a, b)] `zip` [1..],Constr -> [Char] showConstr Constr c [Char] -> [Char] -> Bool forall a. Eq a => a -> a -> Bool ==[Char] str ]-- | Gets the constructors of an algebraic datatypedataTypeConstrs ::DataType ->[Constr ]dataTypeConstrs :: DataType -> [Constr] dataTypeConstrs dt :: DataType dt =caseDataType -> DataRep datarep DataType dt of(AlgRep cons :: [Constr] cons )->[Constr] cons _->[Char] -> [Constr] forall a. [Char] -> a errorWithoutStackTrace ([Char] -> [Constr]) -> [Char] -> [Constr] forall a b. (a -> b) -> a -> b $ "Data.Data.dataTypeConstrs is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an algebraic data type."-- | Gets the field labels of a constructor. The list of labels-- is returned in the same order as they were given in the original-- constructor declaration.constrFields ::Constr ->[String ]constrFields :: Constr -> [[Char]] constrFields =Constr -> [[Char]] confields -- | Gets the fixity of a constructorconstrFixity ::Constr ->Fixity constrFixity :: Constr -> Fixity constrFixity =Constr -> Fixity confixity ---------------------------------------------------------------------------------- From strings to constr's and vice versa: all data types---------------------------------------------------------------------------------- | Gets the string for a constructorshowConstr ::Constr ->String showConstr :: Constr -> [Char] showConstr =Constr -> [Char] constring -- | Lookup a constructor via a stringreadConstr ::DataType ->String ->Maybe Constr readConstr :: DataType -> [Char] -> Maybe Constr readConstr dt :: DataType dt str :: [Char] str =caseDataType -> DataRep dataTypeRep DataType dt ofAlgRep cons :: [Constr] cons ->[Constr] -> Maybe Constr idx [Constr] cons IntRep ->(Integer -> Constr) -> Maybe Constr forall t. Read t => (t -> Constr) -> Maybe Constr mkReadCon (\i :: Integer i ->(DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt [Char] str (Integer -> ConstrRep IntConstr Integer i )))FloatRep ->(Double -> Constr) -> Maybe Constr forall t. Read t => (t -> Constr) -> Maybe Constr mkReadCon Double -> Constr ffloat CharRep ->(Char -> Constr) -> Maybe Constr forall t. Read t => (t -> Constr) -> Maybe Constr mkReadCon (\c :: Char c ->(DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt [Char] str (Char -> ConstrRep CharConstr Char c )))NoRep ->Maybe Constr forall a. Maybe a Nothing where-- Read a value and build a constructormkReadCon ::Read t =>(t ->Constr )->Maybe Constr mkReadCon :: (t -> Constr) -> Maybe Constr mkReadCon f :: t -> Constr f =case(ReadS t forall a. Read a => ReadS a reads [Char] str )of[(t :: t t ,"")]->Constr -> Maybe Constr forall a. a -> Maybe a Just (t -> Constr f t t )_->Maybe Constr forall a. Maybe a Nothing -- Traverse list of algebraic datatype constructorsidx ::[Constr ]->Maybe Constr idx :: [Constr] -> Maybe Constr idx cons :: [Constr] cons =letfit :: [Constr] fit =(Constr -> Bool) -> [Constr] -> [Constr] forall a. (a -> Bool) -> [a] -> [a] filter ([Char] -> [Char] -> Bool forall a. Eq a => a -> a -> Bool (==)[Char] str ([Char] -> Bool) -> (Constr -> [Char]) -> Constr -> Bool forall b c a. (b -> c) -> (a -> b) -> a -> c . Constr -> [Char] showConstr )[Constr] cons inif[Constr] fit [Constr] -> [Constr] -> Bool forall a. Eq a => a -> a -> Bool ==[]thenMaybe Constr forall a. Maybe a Nothing elseConstr -> Maybe Constr forall a. a -> Maybe a Just ([Constr] -> Constr forall a. [a] -> a head [Constr] fit )ffloat ::Double->Constr ffloat :: Double -> Constr ffloat =DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt [Char] str (ConstrRep -> Constr) -> (Double -> ConstrRep) -> Double -> Constr forall b c a. (b -> c) -> (a -> b) -> a -> c . Rational -> ConstrRep FloatConstr (Rational -> ConstrRep) -> (Double -> Rational) -> Double -> ConstrRep forall b c a. (b -> c) -> (a -> b) -> a -> c . Double -> Rational forall a. Real a => a -> Rational toRational ---------------------------------------------------------------------------------- Convenience functions: algebraic data types---------------------------------------------------------------------------------- | Test for an algebraic typeisAlgType ::DataType ->BoolisAlgType :: DataType -> Bool isAlgType dt :: DataType dt =caseDataType -> DataRep datarep DataType dt of(AlgRep _)->Bool True_->Bool False-- | Gets the constructor for an index (algebraic datatypes only)indexConstr ::DataType ->ConIndex ->Constr indexConstr :: DataType -> Int -> Constr indexConstr dt :: DataType dt idx :: Int idx =caseDataType -> DataRep datarep DataType dt of(AlgRep cs :: [Constr] cs )->[Constr] cs [Constr] -> Int -> Constr forall a. [a] -> Int -> a !! (Int idx Int -> Int -> Int forall a. Num a => a -> a -> a - 1)_->[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr forall a b. (a -> b) -> a -> b $ "Data.Data.indexConstr is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an algebraic data type."-- | Gets the index of a constructor (algebraic datatypes only)constrIndex ::Constr ->ConIndex constrIndex :: Constr -> Int constrIndex con :: Constr con =caseConstr -> ConstrRep constrRep Constr con of(AlgConstr idx :: Int idx )->Int idx _->[Char] -> Int forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Int) -> [Char] -> Int forall a b. (a -> b) -> a -> b $ "Data.Data.constrIndex is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName (Constr -> DataType constrType Constr con )[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an algebraic data type."-- | Gets the maximum constructor index of an algebraic datatypemaxConstrIndex ::DataType ->ConIndex maxConstrIndex :: DataType -> Int maxConstrIndex dt :: DataType dt =caseDataType -> DataRep dataTypeRep DataType dt ofAlgRep cs :: [Constr] cs ->[Constr] -> Int forall a. [a] -> Int length [Constr] cs _->[Char] -> Int forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Int) -> [Char] -> Int forall a b. (a -> b) -> a -> b $ "Data.Data.maxConstrIndex is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an algebraic data type."---------------------------------------------------------------------------------- Representation of primitive types---------------------------------------------------------------------------------- | Constructs the 'Int' typemkIntType ::String ->DataType mkIntType :: [Char] -> DataType mkIntType =DataRep -> [Char] -> DataType mkPrimType DataRep IntRep -- | Constructs the 'Float' typemkFloatType ::String ->DataType mkFloatType :: [Char] -> DataType mkFloatType =DataRep -> [Char] -> DataType mkPrimType DataRep FloatRep -- | Constructs the 'Char' typemkCharType ::String ->DataType mkCharType :: [Char] -> DataType mkCharType =DataRep -> [Char] -> DataType mkPrimType DataRep CharRep -- | Helper for 'mkIntType', 'mkFloatType'mkPrimType ::DataRep ->String ->DataType mkPrimType :: DataRep -> [Char] -> DataType mkPrimType dr :: DataRep dr str :: [Char] str =DataType :: [Char] -> DataRep -> DataType DataType {tycon :: [Char] tycon =[Char] str ,datarep :: DataRep datarep =DataRep dr }-- Makes a constructor for primitive typesmkPrimCon ::DataType ->String ->ConstrRep ->Constr mkPrimCon :: DataType -> [Char] -> ConstrRep -> Constr mkPrimCon dt :: DataType dt str :: [Char] str cr :: ConstrRep cr =Constr :: ConstrRep -> [Char] -> [[Char]] -> Fixity -> DataType -> Constr Constr {datatype :: DataType datatype =DataType dt ,conrep :: ConstrRep conrep =ConstrRep cr ,constring :: [Char] constring =[Char] str ,confields :: [[Char]] confields =[Char] -> [[Char]] forall a. [Char] -> a errorWithoutStackTrace "Data.Data.confields",confixity :: Fixity confixity =[Char] -> Fixity forall a. [Char] -> a errorWithoutStackTrace "Data.Data.confixity"}mkIntegralConstr ::(Integral a ,Show a )=>DataType ->a ->Constr mkIntegralConstr :: DataType -> a -> Constr mkIntegralConstr dt :: DataType dt i :: a i =caseDataType -> DataRep datarep DataType dt ofIntRep ->DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt (a -> [Char] forall a. Show a => a -> [Char] show a i )(Integer -> ConstrRep IntConstr (a -> Integer forall a. Integral a => a -> Integer toInteger a i ))_->[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr forall a b. (a -> b) -> a -> b $ "Data.Data.mkIntegralConstr is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an Integral data type."mkRealConstr ::(Real a ,Show a )=>DataType ->a ->Constr mkRealConstr :: DataType -> a -> Constr mkRealConstr dt :: DataType dt f :: a f =caseDataType -> DataRep datarep DataType dt ofFloatRep ->DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt (a -> [Char] forall a. Show a => a -> [Char] show a f )(Rational -> ConstrRep FloatConstr (a -> Rational forall a. Real a => a -> Rational toRational a f ))_->[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr forall a b. (a -> b) -> a -> b $ "Data.Data.mkRealConstr is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not a Real data type."-- | Makes a constructor for 'Char'.mkCharConstr ::DataType ->Char->Constr mkCharConstr :: DataType -> Char -> Constr mkCharConstr dt :: DataType dt c :: Char c =caseDataType -> DataRep datarep DataType dt ofCharRep ->DataType -> [Char] -> ConstrRep -> Constr mkPrimCon DataType dt (Char -> [Char] forall a. Show a => a -> [Char] show Char c )(Char -> ConstrRep CharConstr Char c )_->[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace ([Char] -> Constr) -> [Char] -> Constr forall a b. (a -> b) -> a -> b $ "Data.Data.mkCharConstr is not supported for "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ DataType -> [Char] dataTypeName DataType dt [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ", as it is not an Char data type."---------------------------------------------------------------------------------- Non-representations for non-representable types---------------------------------------------------------------------------------- | Constructs a non-representation for a non-representable typemkNoRepType ::String ->DataType mkNoRepType :: [Char] -> DataType mkNoRepType str :: [Char] str =DataType :: [Char] -> DataRep -> DataType DataType {tycon :: [Char] tycon =[Char] str ,datarep :: DataRep datarep =DataRep NoRep }-- | Test for a non-representable typeisNorepType ::DataType ->BoolisNorepType :: DataType -> Bool isNorepType dt :: DataType dt =caseDataType -> DataRep datarep DataType dt ofNoRep ->Bool True_->Bool False---------------------------------------------------------------------------------- Convenience for qualified type constructors---------------------------------------------------------------------------------- | Gets the unqualified type constructor:-- drop *.*.*... before name--tyconUQname ::String ->String tyconUQname :: ShowS tyconUQname x :: [Char] x =letx' :: [Char] x' =(Char -> Bool) -> ShowS forall a. (a -> Bool) -> [a] -> [a] dropWhile (Bool -> Bool not(Bool -> Bool) -> (Char -> Bool) -> Char -> Bool forall b c a. (b -> c) -> (a -> b) -> a -> c . Char -> Char -> Bool forall a. Eq a => a -> a -> Bool (==)'.')[Char] x inif[Char] x' [Char] -> [Char] -> Bool forall a. Eq a => a -> a -> Bool ==[]then[Char] x elseShowS tyconUQname (ShowS forall a. [a] -> [a] tail [Char] x' )-- | Gets the module of a type constructor:-- take *.*.*... before nametyconModule ::String ->String tyconModule :: ShowS tyconModule x :: [Char] x =let(a :: [Char] a ,b :: [Char] b )=(Char -> Bool) -> [Char] -> ([Char], [Char]) forall a. (a -> Bool) -> [a] -> ([a], [a]) break (Char -> Char -> Bool forall a. Eq a => a -> a -> Bool (==)'.')[Char] x inif[Char] b [Char] -> [Char] -> Bool forall a. Eq a => a -> a -> Bool ==""then[Char] b else[Char] a [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ ShowS tyconModule' (ShowS forall a. [a] -> [a] tail [Char] b )wheretyconModule' :: ShowS tyconModule' y :: [Char] y =lety' :: [Char] y' =ShowS tyconModule [Char] y inif[Char] y' [Char] -> [Char] -> Bool forall a. Eq a => a -> a -> Bool ==""then""else('.'Char -> ShowS forall a. a -> [a] -> [a] :[Char] y' )---------------------------------------------------------------------------------------------------------------------------------------------------------------- Instances of the Data class for Prelude-like types.-- We define top-level definitions for representations.---------------------------------------------------------------------------------- | @since 4.0.0.0derivinginstanceData Bool------------------------------------------------------------------------------charType ::DataType charType :: DataType charType =[Char] -> DataType mkCharType "Prelude.Char"-- | @since 4.0.0.0instanceData CharwheretoConstr :: Char -> Constr toConstr x :: Char x =DataType -> Char -> Constr mkCharConstr DataType charType Char x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(CharConstr x :: Char x )->Char -> c Char forall r. r -> c r z Char x _->[Char] -> c Char forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Char) -> [Char] -> c Char forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Char."dataTypeOf :: Char -> DataType dataTypeOf _=DataType charType ------------------------------------------------------------------------------floatType ::DataType floatType :: DataType floatType =[Char] -> DataType mkFloatType "Prelude.Float"-- | @since 4.0.0.0instanceData FloatwheretoConstr :: Float -> Constr toConstr =DataType -> Float -> Constr forall a. (Real a, Show a) => DataType -> a -> Constr mkRealConstr DataType floatType gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(FloatConstr x :: Rational x )->Float -> c Float forall r. r -> c r z (Rational -> Float forall a b. (Real a, Fractional b) => a -> b realToFrac Rational x )_->[Char] -> c Float forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Float) -> [Char] -> c Float forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Float."dataTypeOf :: Float -> DataType dataTypeOf _=DataType floatType ------------------------------------------------------------------------------doubleType ::DataType doubleType :: DataType doubleType =[Char] -> DataType mkFloatType "Prelude.Double"-- | @since 4.0.0.0instanceData DoublewheretoConstr :: Double -> Constr toConstr =DataType -> Double -> Constr forall a. (Real a, Show a) => DataType -> a -> Constr mkRealConstr DataType doubleType gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(FloatConstr x :: Rational x )->Double -> c Double forall r. r -> c r z (Rational -> Double forall a b. (Real a, Fractional b) => a -> b realToFrac Rational x )_->[Char] -> c Double forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Double) -> [Char] -> c Double forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Double."dataTypeOf :: Double -> DataType dataTypeOf _=DataType doubleType ------------------------------------------------------------------------------intType ::DataType intType :: DataType intType =[Char] -> DataType mkIntType "Prelude.Int"-- | @since 4.0.0.0instanceData IntwheretoConstr :: Int -> Constr toConstr x :: Int x =DataType -> Int -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType intType Int x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Int -> c Int forall r. r -> c r z (Integer -> Int forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Int forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Int) -> [Char] -> c Int forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Int."dataTypeOf :: Int -> DataType dataTypeOf _=DataType intType ------------------------------------------------------------------------------integerType ::DataType integerType :: DataType integerType =[Char] -> DataType mkIntType "Prelude.Integer"-- | @since 4.0.0.0instanceData IntegerwheretoConstr :: Integer -> Constr toConstr =DataType -> Integer -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType integerType gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Integer gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Integer -> c Integer forall r. r -> c r z Integer x _->[Char] -> c Integer forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Integer) -> [Char] -> c Integer forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Integer."dataTypeOf :: Integer -> DataType dataTypeOf _=DataType integerType -------------------------------------------------------------------------------- This follows the same style as the other integral 'Data' instances-- defined in "Data.Data"naturalType ::DataType naturalType :: DataType naturalType =[Char] -> DataType mkIntType "Numeric.Natural.Natural"-- | @since 4.8.0.0instanceData Natural wheretoConstr :: Natural -> Constr toConstr x :: Natural x =DataType -> Natural -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType naturalType Natural x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Natural -> c Natural forall r. r -> c r z (Integer -> Natural forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Natural forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Natural) -> [Char] -> c Natural forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Natural"dataTypeOf :: Natural -> DataType dataTypeOf _=DataType naturalType ------------------------------------------------------------------------------int8Type ::DataType int8Type :: DataType int8Type =[Char] -> DataType mkIntType "Data.Int.Int8"-- | @since 4.0.0.0instanceData Int8 wheretoConstr :: Int8 -> Constr toConstr x :: Int8 x =DataType -> Int8 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType int8Type Int8 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int8 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Int8 -> c Int8 forall r. r -> c r z (Integer -> Int8 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Int8 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Int8) -> [Char] -> c Int8 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Int8."dataTypeOf :: Int8 -> DataType dataTypeOf _=DataType int8Type ------------------------------------------------------------------------------int16Type ::DataType int16Type :: DataType int16Type =[Char] -> DataType mkIntType "Data.Int.Int16"-- | @since 4.0.0.0instanceData Int16 wheretoConstr :: Int16 -> Constr toConstr x :: Int16 x =DataType -> Int16 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType int16Type Int16 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int16 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Int16 -> c Int16 forall r. r -> c r z (Integer -> Int16 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Int16 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Int16) -> [Char] -> c Int16 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Int16."dataTypeOf :: Int16 -> DataType dataTypeOf _=DataType int16Type ------------------------------------------------------------------------------int32Type ::DataType int32Type :: DataType int32Type =[Char] -> DataType mkIntType "Data.Int.Int32"-- | @since 4.0.0.0instanceData Int32 wheretoConstr :: Int32 -> Constr toConstr x :: Int32 x =DataType -> Int32 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType int32Type Int32 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int32 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Int32 -> c Int32 forall r. r -> c r z (Integer -> Int32 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Int32 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Int32) -> [Char] -> c Int32 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Int32."dataTypeOf :: Int32 -> DataType dataTypeOf _=DataType int32Type ------------------------------------------------------------------------------int64Type ::DataType int64Type :: DataType int64Type =[Char] -> DataType mkIntType "Data.Int.Int64"-- | @since 4.0.0.0instanceData Int64 wheretoConstr :: Int64 -> Constr toConstr x :: Int64 x =DataType -> Int64 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType int64Type Int64 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int64 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Int64 -> c Int64 forall r. r -> c r z (Integer -> Int64 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Int64 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Int64) -> [Char] -> c Int64 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Int64."dataTypeOf :: Int64 -> DataType dataTypeOf _=DataType int64Type ------------------------------------------------------------------------------wordType ::DataType wordType :: DataType wordType =[Char] -> DataType mkIntType "Data.Word.Word"-- | @since 4.0.0.0instanceData WordwheretoConstr :: Word -> Constr toConstr x :: Word x =DataType -> Word -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType wordType Word x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Word -> c Word forall r. r -> c r z (Integer -> Word forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Word forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Word) -> [Char] -> c Word forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Word"dataTypeOf :: Word -> DataType dataTypeOf _=DataType wordType ------------------------------------------------------------------------------word8Type ::DataType word8Type :: DataType word8Type =[Char] -> DataType mkIntType "Data.Word.Word8"-- | @since 4.0.0.0instanceData Word8 wheretoConstr :: Word8 -> Constr toConstr x :: Word8 x =DataType -> Word8 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType word8Type Word8 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word8 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Word8 -> c Word8 forall r. r -> c r z (Integer -> Word8 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Word8 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Word8) -> [Char] -> c Word8 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Word8."dataTypeOf :: Word8 -> DataType dataTypeOf _=DataType word8Type ------------------------------------------------------------------------------word16Type ::DataType word16Type :: DataType word16Type =[Char] -> DataType mkIntType "Data.Word.Word16"-- | @since 4.0.0.0instanceData Word16 wheretoConstr :: Word16 -> Constr toConstr x :: Word16 x =DataType -> Word16 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType word16Type Word16 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word16 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Word16 -> c Word16 forall r. r -> c r z (Integer -> Word16 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Word16 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Word16) -> [Char] -> c Word16 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Word16."dataTypeOf :: Word16 -> DataType dataTypeOf _=DataType word16Type ------------------------------------------------------------------------------word32Type ::DataType word32Type :: DataType word32Type =[Char] -> DataType mkIntType "Data.Word.Word32"-- | @since 4.0.0.0instanceData Word32 wheretoConstr :: Word32 -> Constr toConstr x :: Word32 x =DataType -> Word32 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType word32Type Word32 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word32 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Word32 -> c Word32 forall r. r -> c r z (Integer -> Word32 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Word32 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Word32) -> [Char] -> c Word32 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Word32."dataTypeOf :: Word32 -> DataType dataTypeOf _=DataType word32Type ------------------------------------------------------------------------------word64Type ::DataType word64Type :: DataType word64Type =[Char] -> DataType mkIntType "Data.Word.Word64"-- | @since 4.0.0.0instanceData Word64 wheretoConstr :: Word64 -> Constr toConstr x :: Word64 x =DataType -> Word64 -> Constr forall a. (Integral a, Show a) => DataType -> a -> Constr mkIntegralConstr DataType word64Type Word64 x gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word64 gunfold _z :: forall r. r -> c r z c :: Constr c =caseConstr -> ConstrRep constrRep Constr c of(IntConstr x :: Integer x )->Word64 -> c Word64 forall r. r -> c r z (Integer -> Word64 forall a b. (Integral a, Num b) => a -> b fromIntegral Integer x )_->[Char] -> c Word64 forall a. [Char] -> a errorWithoutStackTrace ([Char] -> c Word64) -> [Char] -> c Word64 forall a b. (a -> b) -> a -> b $ "Data.Data.gunfold: Constructor "[Char] -> ShowS forall a. [a] -> [a] -> [a] ++ Constr -> [Char] forall a. Show a => a -> [Char] show Constr c [Char] -> ShowS forall a. [a] -> [a] -> [a] ++ " is not of type Word64."dataTypeOf :: Word64 -> DataType dataTypeOf _=DataType word64Type ------------------------------------------------------------------------------ratioConstr ::Constr ratioConstr :: Constr ratioConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr mkConstr DataType ratioDataType ":%"[]Fixity Infix ratioDataType ::DataType ratioDataType :: DataType ratioDataType =[Char] -> [Constr] -> DataType mkDataType "GHC.Real.Ratio"[Constr ratioConstr ]-- NB: This Data instance intentionally uses the (%) smart constructor instead-- of the internal (:%) constructor to preserve the invariant that a Ratio-- value is reduced to normal form. See Trac #10011.-- | @since 4.0.0.0instance(Data a ,Integral a )=>Data (Ratio a )wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ratio a -> c (Ratio a) gfoldl k :: forall d b. Data d => c (d -> b) -> d -> c b k z :: forall g. g -> c g z (a :: a a :% b :: a b )=(a -> a -> Ratio a) -> c (a -> a -> Ratio a) forall g. g -> c g z a -> a -> Ratio a forall a. Integral a => a -> a -> Ratio a (%) c (a -> a -> Ratio a) -> a -> c (a -> Ratio a) forall d b. Data d => c (d -> b) -> d -> c b `k` a a c (a -> Ratio a) -> a -> c (Ratio a) forall d b. Data d => c (d -> b) -> d -> c b `k` a b toConstr :: Ratio a -> Constr toConstr _=Constr ratioConstr gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ratio a) gunfold k :: forall b r. Data b => c (b -> r) -> c r k z :: forall r. r -> c r z c :: Constr c |Constr -> Int constrIndex Constr c Int -> Int -> Bool forall a. Eq a => a -> a -> Bool ==1=c (a -> Ratio a) -> c (Ratio a) forall b r. Data b => c (b -> r) -> c r k (c (a -> a -> Ratio a) -> c (a -> Ratio a) forall b r. Data b => c (b -> r) -> c r k ((a -> a -> Ratio a) -> c (a -> a -> Ratio a) forall r. r -> c r z a -> a -> Ratio a forall a. Integral a => a -> a -> Ratio a (%) ))gunfold ___=[Char] -> c (Ratio a) forall a. [Char] -> a errorWithoutStackTrace "Data.Data.gunfold(Ratio)"dataTypeOf :: Ratio a -> DataType dataTypeOf _=DataType ratioDataType ------------------------------------------------------------------------------nilConstr ::Constr nilConstr :: Constr nilConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr mkConstr DataType listDataType "[]"[]Fixity Prefix consConstr ::Constr consConstr :: Constr consConstr =DataType -> [Char] -> [[Char]] -> Fixity -> Constr mkConstr DataType listDataType "(:)"[]Fixity Infix listDataType ::DataType listDataType :: DataType listDataType =[Char] -> [Constr] -> DataType mkDataType "Prelude.[]"[Constr nilConstr ,Constr consConstr ]-- | @since 4.0.0.0instanceData a =>Data [a ]wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> [a] -> c [a] gfoldl _z :: forall g. g -> c g z []=[a] -> c [a] forall g. g -> c g z []gfoldl f :: forall d b. Data d => c (d -> b) -> d -> c b f z :: forall g. g -> c g z (x :: a x :xs :: [a] xs )=(a -> [a] -> [a]) -> c (a -> [a] -> [a]) forall g. g -> c g z (:)c (a -> [a] -> [a]) -> a -> c ([a] -> [a]) forall d b. Data d => c (d -> b) -> d -> c b `f` a x c ([a] -> [a]) -> [a] -> c [a] forall d b. Data d => c (d -> b) -> d -> c b `f` [a] xs toConstr :: [a] -> Constr toConstr []=Constr nilConstr toConstr (_:_)=Constr consConstr gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c [a] gunfold k :: forall b r. Data b => c (b -> r) -> c r k z :: forall r. r -> c r z c :: Constr c =caseConstr -> Int constrIndex Constr c of1->[a] -> c [a] forall r. r -> c r z []2->c ([a] -> [a]) -> c [a] forall b r. Data b => c (b -> r) -> c r k (c (a -> [a] -> [a]) -> c ([a] -> [a]) forall b r. Data b => c (b -> r) -> c r k ((a -> [a] -> [a]) -> c (a -> [a] -> [a]) forall r. r -> c r z (:)))_->[Char] -> c [a] forall a. [Char] -> a errorWithoutStackTrace "Data.Data.gunfold(List)"dataTypeOf :: [a] -> DataType dataTypeOf _=DataType listDataType dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c [a]) dataCast1 f :: forall d. Data d => c (t d) f =c (t a) -> Maybe (c [a]) forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1) (a :: k2). (Typeable t, Typeable t') => c (t a) -> Maybe (c (t' a)) gcast1 c (t a) forall d. Data d => c (t d) f ---- The gmaps are given as an illustration.-- This shows that the gmaps for lists are different from list maps.--gmapT :: (forall b. Data b => b -> b) -> [a] -> [a] gmapT _[]=[]gmapT f :: forall b. Data b => b -> b f (x :: a x :xs :: [a] xs )=(a -> a forall b. Data b => b -> b f a x a -> [a] -> [a] forall a. a -> [a] -> [a] :[a] -> [a] forall b. Data b => b -> b f [a] xs )gmapQ :: (forall d. Data d => d -> u) -> [a] -> [u] gmapQ _[]=[]gmapQ f :: forall d. Data d => d -> u f (x :: a x :xs :: [a] xs )=[a -> u forall d. Data d => d -> u f a x ,[a] -> u forall d. Data d => d -> u f [a] xs ]gmapM :: (forall d. Data d => d -> m d) -> [a] -> m [a] gmapM _[]=[a] -> m [a] forall (m :: * -> *) a. Monad m => a -> m a return []gmapM f :: forall d. Data d => d -> m d f (x :: a x :xs :: [a] xs )=a -> m a forall d. Data d => d -> m d f a x m a -> (a -> m [a]) -> m [a] forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \x' :: a x' ->[a] -> m [a] forall d. Data d => d -> m d f [a] xs m [a] -> ([a] -> m [a]) -> m [a] forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b >>= \xs' :: [a] xs' ->[a] -> m [a] forall (m :: * -> *) a. Monad m => a -> m a return (a x' a -> [a] -> [a] forall a. a -> [a] -> [a] :[a] xs' )-------------------------------------------------------------------------------- | @since 4.9.0.0derivinginstanceData a =>Data (NonEmpty a )-- | @since 4.0.0.0derivinginstanceData a =>Data (Maybe a )-- | @since 4.0.0.0derivinginstanceData Ordering-- | @since 4.0.0.0derivinginstance(Data a ,Data b )=>Data (Either a b )-- | @since 4.0.0.0derivinginstanceData ()-- | @since 4.0.0.0derivinginstance(Data a ,Data b )=>Data (a ,b )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c )=>Data (a ,b ,c )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d )=>Data (a ,b ,c ,d )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e )=>Data (a ,b ,c ,d ,e )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e ,Data f )=>Data (a ,b ,c ,d ,e ,f )-- | @since 4.0.0.0derivinginstance(Data a ,Data b ,Data c ,Data d ,Data e ,Data f ,Data g )=>Data (a ,b ,c ,d ,e ,f ,g )-------------------------------------------------------------------------------- | @since 4.8.0.0instanceData a =>Data (Ptr a )wheretoConstr :: Ptr a -> Constr toConstr _=[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace "Data.Data.toConstr(Ptr)"gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) gunfold __=[Char] -> Constr -> c (Ptr a) forall a. [Char] -> a errorWithoutStackTrace "Data.Data.gunfold(Ptr)"dataTypeOf :: Ptr a -> DataType dataTypeOf _=[Char] -> DataType mkNoRepType "GHC.Ptr.Ptr"dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) dataCast1 x :: forall d. Data d => c (t d) x =c (t a) -> Maybe (c (Ptr a)) forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1) (a :: k2). (Typeable t, Typeable t') => c (t a) -> Maybe (c (t' a)) gcast1 c (t a) forall d. Data d => c (t d) x -------------------------------------------------------------------------------- | @since 4.8.0.0instanceData a =>Data (ForeignPtr a )wheretoConstr :: ForeignPtr a -> Constr toConstr _=[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace "Data.Data.toConstr(ForeignPtr)"gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ForeignPtr a) gunfold __=[Char] -> Constr -> c (ForeignPtr a) forall a. [Char] -> a errorWithoutStackTrace "Data.Data.gunfold(ForeignPtr)"dataTypeOf :: ForeignPtr a -> DataType dataTypeOf _=[Char] -> DataType mkNoRepType "GHC.ForeignPtr.ForeignPtr"dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (ForeignPtr a)) dataCast1 x :: forall d. Data d => c (t d) x =c (t a) -> Maybe (c (ForeignPtr a)) forall k1 k2 (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1) (a :: k2). (Typeable t, Typeable t') => c (t a) -> Maybe (c (t' a)) gcast1 c (t a) forall d. Data d => c (t d) x -- | @since 4.11.0.0derivinginstanceData IntPtr -- | @since 4.11.0.0derivinginstanceData WordPtr -------------------------------------------------------------------------------- The Data instance for Array preserves data abstraction at the cost of-- inefficiency. We omit reflection services for the sake of data abstraction.-- | @since 4.8.0.0instance(Data a ,Data b ,Ix a )=>Data (Array a b )wheregfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Array a b -> c (Array a b) gfoldl f :: forall d b. Data d => c (d -> b) -> d -> c b f z :: forall g. g -> c g z a :: Array a b a =([b] -> Array a b) -> c ([b] -> Array a b) forall g. g -> c g z ((a, a) -> [b] -> Array a b forall i e. Ix i => (i, i) -> [e] -> Array i e listArray (Array a b -> (a, a) forall i e. Array i e -> (i, i) bounds Array a b a ))c ([b] -> Array a b) -> [b] -> c (Array a b) forall d b. Data d => c (d -> b) -> d -> c b `f` (Array a b -> [b] forall i e. Array i e -> [e] elems Array a b a )toConstr :: Array a b -> Constr toConstr _=[Char] -> Constr forall a. [Char] -> a errorWithoutStackTrace "Data.Data.toConstr(Array)"gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Array a b) gunfold __=[Char] -> Constr -> c (Array a b) forall a. [Char] -> a errorWithoutStackTrace "Data.Data.gunfold(Array)"dataTypeOf :: Array a b -> DataType dataTypeOf _=[Char] -> DataType mkNoRepType "Data.Array.Array"dataCast2 :: (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Array a b)) dataCast2 x :: forall d e. (Data d, Data e) => c (t d e) x =c (t a b) -> Maybe (c (Array a b)) forall k1 k2 k3 (c :: k1 -> *) (t :: k2 -> k3 -> k1) (t' :: k2 -> k3 -> k1) (a :: k2) (b :: k3). (Typeable t, Typeable t') => c (t a b) -> Maybe (c (t' a b)) gcast2 c (t a b) forall d e. (Data d, Data e) => c (t d e) x ------------------------------------------------------------------------------ Data instance for Proxy-- | @since 4.7.0.0derivinginstance(Data t )=>Data (Proxy t )-- | @since 4.7.0.0derivinginstance(a ~b ,Data a )=>Data (a :~: b )-- | @since 4.10.0.0derivinginstance(Typeable i ,Typeable j ,Typeable a ,Typeable b ,(a ::i )~~(b ::j ))=>Data (a :~~: b )-- | @since 4.7.0.0derivinginstance(Coerciblea b ,Data a ,Data b )=>Data (Coercion a b )-- | @since 4.9.0.0derivinginstanceData a =>Data (Identity a )-- | @since 4.10.0.0derivinginstance(Typeable k ,Data a ,Typeable (b ::k ))=>Data (Const a b )-- | @since 4.7.0.0derivinginstanceData Version ------------------------------------------------------------------------------ Data instances for Data.Monoid wrappers-- | @since 4.8.0.0derivinginstanceData a =>Data (Dual a )-- | @since 4.8.0.0derivinginstanceData All -- | @since 4.8.0.0derivinginstanceData Any -- | @since 4.8.0.0derivinginstanceData a =>Data (Sum a )-- | @since 4.8.0.0derivinginstanceData a =>Data (Product a )-- | @since 4.8.0.0derivinginstanceData a =>Data (First a )-- | @since 4.8.0.0derivinginstanceData a =>Data (Last a )-- | @since 4.8.0.0derivinginstance(Data (f a ),Data a ,Typeable f )=>Data (Alt f a )-- | @since 4.12.0.0derivinginstance(Data (f a ),Data a ,Typeable f )=>Data (Ap f a )------------------------------------------------------------------------------ Data instances for GHC.Generics representations-- | @since 4.9.0.0derivinginstanceData p =>Data (U1 p )-- | @since 4.9.0.0derivinginstanceData p =>Data (Par1 p )-- | @since 4.9.0.0derivinginstance(Data (f p ),Typeable f ,Data p )=>Data (Rec1 f p )-- | @since 4.9.0.0derivinginstance(Typeable i ,Data p ,Data c )=>Data (K1 i c p )-- | @since 4.9.0.0derivinginstance(Data p ,Data (f p ),Typeable c ,Typeable i ,Typeable f )=>Data (M1 i c f p )-- | @since 4.9.0.0derivinginstance(Typeable f ,Typeable g ,Data p ,Data (f p ),Data (g p ))=>Data ((f :+: g )p )-- | @since 4.9.0.0derivinginstance(Typeable (f ::Type->Type),Typeable (g ::Type->Type),Data p ,Data (f (g p )))=>Data ((f :.: g )p )-- | @since 4.9.0.0derivinginstanceData p =>Data (V1 p )-- | @since 4.9.0.0derivinginstance(Typeable f ,Typeable g ,Data p ,Data (f p ),Data (g p ))=>Data ((f :*: g )p )-- | @since 4.9.0.0derivinginstanceData Generics.Fixity -- | @since 4.9.0.0derivinginstanceData Associativity -- | @since 4.9.0.0derivinginstanceData SourceUnpackedness -- | @since 4.9.0.0derivinginstanceData SourceStrictness -- | @since 4.9.0.0derivinginstanceData DecidedStrictness ------------------------------------------------------------------------------ Data instances for Data.Ord-- | @since 4.12.0.0derivinginstanceData a =>Data (Down a )