Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

weihancug/Remote-Sensing-Object-Detection-with-Oriented-Bouding-Box

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

14 Commits

Repository files navigation

Remote-Sensing-Object-Detection-with-Oriented-Bouding-Box

Some object detection codes for DOTA dataset

这里用到的数据集是DOTA数据集包含15个类别:'small-vehicle', 'plane', 'large-vehicle', 'ship', 'harbor', 'tennis-court', 'round-track-field', 'soccer-ball-field', 'baseball-diamond', 'swimming-pool', 'roundabout', 'basketball-court', 'storage-tank', 'bridge', 'helicopter'

Dota数据集实例

1 首先使用data_crop.py 讲dota数据集进行切分,可以训练的大小,例如1000x1000

2 接下来使用create_data_list.py,创建一个训练集和测试集所有文件的json文件,用于模型读取

3 模型训练: 两个参数,第一个是interpreter options: -m torch.distributed.launch --nproc_per_node = 2 第二个是:--skip-test --config-file config_path DATALOADER.2 OUTPUT_DIR output_path

-m torch.distributed.launch --nproc_per_node = 2 python train_net.py --skip-test --config-file ../configs/fcos/orientedfcos_R50_1x.yaml DATALOADER.2 OUTPUT_DIR ../training_dir/orientedfcos_R_50_FPN_1x

4 模型测试:

About

Some object detection codes for DOTA dataset

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /