Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Notifications You must be signed in to change notification settings

wangpanjun/write-rnn-tensorflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

60 Commits

Repository files navigation

Generative Handwriting Demo using TensorFlow

example

example

An attempt to implement the random handwriting generation portion of Alex Graves' paper.

See my blog post at blog.otoro.net for more information.

How to use

I tested the implementation on TensorFlow r0.11 and Pyton 3. I also used the following libraries to help:

svgwrite
IPython.display.SVG
IPython.display.display
xml.etree.ElementTree
argparse
pickle

Training

You will need permission from these wonderful people people to get the IAM On-Line Handwriting data. Unzip lineStrokes-all.tar.gz into the data subdirectory, so that you end up with data/lineStrokes/a01, data/lineStrokes/a02, etc. Afterwards, running python train.py will start the training process.

A number of flags can be set for training if you wish to experiment with the parameters. The default values are in train.py

--rnn_size RNN_SIZE size of RNN hidden state
--num_layers NUM_LAYERS number of layers in the RNN
--model MODEL rnn, gru, or lstm
--batch_size BATCH_SIZE minibatch size
--seq_length SEQ_LENGTH RNN sequence length
--num_epochs NUM_EPOCHS number of epochs
--save_every SAVE_EVERY save frequency
--grad_clip GRAD_CLIP clip gradients at this value
--learning_rate LEARNING_RATE learning rate
--decay_rate DECAY_RATE decay rate for rmsprop
--num_mixture NUM_MIXTURE number of gaussian mixtures
--data_scale DATA_SCALE factor to scale raw data down by
--keep_prob KEEP_PROB dropout keep probability

Generating a Handwriting Sample

I've included a pretrained model in /save so it should work out of the box. Running python sample.py --filename example_name --sample_length 1000 will generate 4 .svg files for each example, with 1000 points.

IPython interactive session.

If you wish to experiment with this code interactively, just run %run -i sample.py in an IPython console, and then the following code is an example on how to generate samples and show them inside IPython.

[strokes, params] = model.sample(sess, 800)
draw_strokes(strokes, factor=8, svg_filename = 'sample.normal.svg')
draw_strokes_random_color(strokes, factor=8, svg_filename = 'sample.color.svg')
draw_strokes_random_color(strokes, factor=8, per_stroke_mode = False, svg_filename = 'sample.multi_color.svg')
draw_strokes_eos_weighted(strokes, params, factor=8, svg_filename = 'sample.eos.svg')
draw_strokes_pdf(strokes, params, factor=8, svg_filename = 'sample.pdf.svg')

example1a example1b example1c example1d example1e

Have fun-

License

MIT

About

Generative Handwriting using LSTM Mixture Density Network with TensorFlow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%

AltStyle によって変換されたページ (->オリジナル) /