|
24 | 24 | },
|
25 | 25 | {
|
26 | 26 | "cell_type": "code",
|
27 | | - "execution_count": 3, |
28 | | - "metadata": { |
29 | | - "collapsed": false |
30 | | - }, |
31 | | - "outputs": [], |
32 | | - "source": [ |
33 | | - "# this model makes no sense - just a visualization of this library\n", |
34 | | - "model = Sequential()\n", |
35 | | - "model.add(l.BatchNormalization(input_shape=(3, 32, 32)))\n", |
36 | | - "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
37 | | - "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
38 | | - "model.add(l.MaxPooling2D((2, 2)))\n", |
39 | | - "model.add(l.Convolution2D(16, 1, 1, activation='tanh'))\n", |
40 | | - "model.add(l.Flatten())\n", |
41 | | - "model.add(l.Dense(16))\n", |
42 | | - "model.add(l.Dropout(0.5))\n", |
43 | | - "model.add(l.Dense(3, activation='softmax'))\n", |
44 | | - "\n" |
45 | | - ] |
46 | | - }, |
47 | | - { |
48 | | - "cell_type": "code", |
49 | | - "execution_count": 4, |
| 27 | + "execution_count": 2, |
50 | 28 | "metadata": {
|
51 | 29 | "collapsed": false
|
52 | 30 | },
|
|
62 | 40 | " ##### 3 32 32\n",
|
63 | 41 | " Convolution2D \\|/ ------------------- 448 0.8%\n",
|
64 | 42 | " relu ##### 16 30 30\n",
|
65 | | - " Convolution2D \\|/ ------------------- 2320 4.4%\n", |
| 43 | + " Convolution2D \\|/ ------------------- 2320 4.3%\n", |
66 | 44 | " relu ##### 16 28 28\n",
|
67 | 45 | " MaxPooling2D YYYYY ------------------- 0 0.0%\n",
|
68 | 46 | " ##### 16 14 14\n",
|
69 | 47 | " Convolution2D \\|/ ------------------- 272 0.5%\n",
|
70 | 48 | " tanh ##### 16 14 14\n",
|
71 | 49 | " Flatten ||||| ------------------- 0 0.0%\n",
|
72 | | - " ##### 3136\n", |
| 50 | + " ##### 3136\n", |
73 | 51 | " Dense XXXXX ------------------- 50192 94.1%\n",
|
74 | | - " ##### 16\n", |
| 52 | + " ##### 16\n", |
75 | 53 | " Dropout | || ------------------- 0 0.0%\n",
|
76 | | - " ##### 16\n", |
77 | | - " Dense XXXXX ------------------- 34 0.1%\n", |
78 | | - " ##### 2\n" |
| 54 | + " ##### 16\n", |
| 55 | + " Dense XXXXX ------------------- 51 0.1%\n", |
| 56 | + " softmax ##### 3\n" |
79 | 57 | ]
|
80 | 58 | }
|
81 | 59 | ],
|
82 | | - "source": [] |
| 60 | + "source": [ |
| 61 | + "# this model makes no sense - just a visualization of this library\n", |
| 62 | + "model = Sequential()\n", |
| 63 | + "model.add(l.BatchNormalization(input_shape=(3, 32, 32)))\n", |
| 64 | + "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
| 65 | + "model.add(l.Convolution2D(16, 3, 3, activation='relu'))\n", |
| 66 | + "model.add(l.MaxPooling2D((2, 2)))\n", |
| 67 | + "model.add(l.Convolution2D(16, 1, 1, activation='tanh'))\n", |
| 68 | + "model.add(l.Flatten())\n", |
| 69 | + "model.add(l.Dense(16))\n", |
| 70 | + "model.add(l.Dropout(0.5))\n", |
| 71 | + "model.add(l.Dense(3, activation='softmax'))\n", |
| 72 | + "\n", |
| 73 | + "sequential_model_to_ascii_printout(model)" |
| 74 | + ] |
83 | 75 | },
|
84 | 76 | {
|
85 | 77 | "cell_type": "code",
|
86 | | - "execution_count": 5, |
| 78 | + "execution_count": 3, |
87 | 79 | "metadata": {
|
88 | 80 | "collapsed": false
|
89 | 81 | },
|
|
134 | 126 | " MaxPooling2D YYYYY ------------------- 0 0.0%\n",
|
135 | 127 | " ##### 512 7 7\n",
|
136 | 128 | " Flatten ||||| ------------------- 0 0.0%\n",
|
137 | | - " ##### 25088\n", |
| 129 | + " ##### 25088\n", |
138 | 130 | " Dense XXXXX ------------------- 102764544 74.3%\n",
|
139 | | - " relu ##### 4096\n", |
| 131 | + " relu ##### 4096\n", |
140 | 132 | " Dense XXXXX ------------------- 16781312 12.1%\n",
|
141 | | - " relu ##### 4096\n", |
| 133 | + " relu ##### 4096\n", |
142 | 134 | " Dense XXXXX ------------------- 4097000 3.0%\n",
|
143 | | - " softmax ##### 1000\n" |
| 135 | + " softmax ##### 1000\n" |
144 | 136 | ]
|
145 | 137 | }
|
146 | 138 | ],
|
|
151 | 143 | },
|
152 | 144 | {
|
153 | 145 | "cell_type": "code",
|
154 | | - "execution_count": 6, |
| 146 | + "execution_count": 4, |
155 | 147 | "metadata": {
|
156 | 148 | "collapsed": false
|
157 | 149 | },
|
|
163 | 155 | "traceback": [
|
164 | 156 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
165 | 157 | "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
|
166 | | - "\u001b[0;32m<ipython-input-6-d46262532051>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
| 158 | + "\u001b[0;32m<ipython-input-4-d46262532051>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", |
167 | 159 | "\u001b[0;31mNameError\u001b[0m: name 'z' is not defined"
|
168 | 160 | ]
|
169 | 161 | }
|
|
0 commit comments